×

Embedding any countable semigroup in a 2-generated congruence-free semigroup. (English) Zbl 0702.20045

Let (S,.) be a semigroup and A, B sets which are mutually disjoint and disjoint from S. Let \(\alpha: A\times S\to A\), \((a,s)\to a\triangleright s\) and \(\beta: S\times B\to B\), \((s,b)\to s\triangleleft b\) be right and left semigroup actions, respectively. Let \(P=(p_{a,b})\) be an \(A\times B\)-matrix with entries in \(S\cup A\cup B\) such that \(p_{a\triangleright s,b}=p_{a,s\triangleleft b}\) for all \(a\in A\), \(b\in B\) and \(s\in S\). Then \({\mathcal C}(S;\alpha,\beta;P)\) is the semigroup generated by the elements of \(S\cup A\cup B\) subject to the defining relations \(ab=p_{a,b}\), \(as=a\triangleright s\), \(sb=s\triangleleft b\), \(st=s.t\), for all \(a\in A\), \(b\in B\), s,t\(\in S\). One can show that the mapping \(S\to {\mathcal C}(S;\alpha,\beta;P)\), \(s\to s\), is an embedding. If S contains an identity, then a modification of the above construction yields a monoid \({\mathcal C}^ 1(S;\alpha,\beta;P)\) so that again \(S\to {\mathcal C}^ 1(S;\alpha,\beta;P)\) is a monoid embedding.
Properties satisfied by \(\alpha\), \(\beta\) or P translate into properties enjoyed by \({\mathcal C}(S;\alpha,\beta;P)\) or \({\mathcal C}^ 1(S;\alpha,\beta;P)\). Using the above construction the author proves the following remarkable results: 1. any [countable] semigroup can be embedded in a [2-generated] congruence free bisimple semigroup with identity, 2. any [countable] semigroup without idempotents can be embedded in a [2-generated] congruence free semigroup without idempotents.
Reviewer: F.J.Pastijn

MSC:

20M10 General structure theory for semigroups
20M05 Free semigroups, generators and relations, word problems
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] S. Banach,Sur un théorème de M. Sierpiński, Fund. Math.25 (1935), 5–6. · JFM 61.0230.01
[2] R. H. Bruck, ”A survey of binary systems,” Ergebnisse der Math. Heft20, Springer, 1958. · Zbl 0081.01704
[3] K. Byleen,Embedding any countable semigroup in a 2-generated bisimple monoid, Glasgow Math. J.25 (1984), 153–161. · Zbl 0538.20029 · doi:10.1017/S0017089500005565
[4] K. Byleen,Embedding any countable semigroup without idempotents in a 2-generated simple semigroup without idempotents, Glasgow Math. J.30 (1988), 121–128. · Zbl 0643.20040 · doi:10.1017/S0017089500007126
[5] A. H. Clifford and G. B. Preston, ”The algebraic theory of semigroups,” Amer. Math. Soc., Providence, 1961, 1967. · Zbl 0111.03403
[6] Editor,Composition of functions (solution to problem 6244), Amer. Math. Monthly87 (1980), 676–678.
[7] T. Evans,Embedding theorems for multiplicative systems and projective geometrics, Proc. Amer. Math. Soc.3 (1952), 614–620. · Zbl 0047.02102 · doi:10.1090/S0002-9939-1952-0050566-9
[8] A. P. Goryushkin,Imbedding of countable groups in 2-generator groups, Mat. Zametki16 (1974), 231–235. · Zbl 0306.20040
[9] T. E. Hall,Inverse and regular semigroups and amalgamation: a brief survey, Proceedings of a Symposium on Regular Semigroups, Northern Illinois University, 1979, 49–79. · Zbl 0443.20049
[10] J. M. Howie,A class of bisimple idempotent-generated congruence-free semigroups, Proc. Royal Soc. Edinburgh88A (1981), 169–184. · Zbl 0456.20043
[11] J. M. Howie, ”An introduction to semigroup theory,” Academic Press, London, 1976. · Zbl 0355.20056
[12] P. R. Jones,Embedding semigroups in D-trivial semigroups, Semigroup Forum33 (1986), 441–445. · Zbl 0584.20057 · doi:10.1007/BF02573214
[13] R. C. Lyndon and P. E. Schupp, ”Combinatorial group theory,” Springer-Verlag, Berlin, 1977. · Zbl 0368.20023
[14] W. D. Munn,Embedding semigroups in congruence-free semigroups, Semigroup Forum4 (1972), 46–60. · Zbl 0284.20062 · doi:10.1007/BF02570768
[15] G. B. Preston,Embedding any semigroup in a D-simple semigroup, Trans. Amer. Math. Soc.93 (1959), 351–355. · Zbl 0090.24302
[16] P. E. Schupp,Embeddings into simple groups, J. London Math.13 (1976), 90–94. · Zbl 0363.20026 · doi:10.1112/jlms/s2-13.1.90
[17] W. Sierpiński,Sur les suites infinies de fonctions définies dan les ensembles quelconques, Fund. Math.24 (1935), 209–212. · JFM 61.0229.03
[18] E. G. Sutov,Embedding semigroups in simple and complete semigroups, Mat. Sbornik (N. S.)62 (1963), 496–511.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.