Language:   Search:   Contact
Zentralblatt MATH has released its new interface!
For an improved author identification, see the new author database of ZBMATH.

Query:
Fill in the form and click »Search«...
Format:
Display: entries per page entries
Zbl 0674.40008
Statistical convergence in a locally convex space.
(English)
[J] Math. Proc. Camb. Philos. Soc. 104, No.1, 141-145 (1988). ISSN 0305-0041; ISSN 1469-8064/e

Let X be a locally convex Hausdorff topological linear space, whose topology is given by a family Q of continuous seminorms q. A sequence $(x\sb k)\in X$ converges statistically to $\ell \in X$ if $n\sp{-1}\vert \{k\le n:\quad q(x\sb k-\ell)\ge \epsilon \}\vert \to 0$ as $n\to \infty$, $\forall q\in Q$, $\forall \epsilon >0$, where $\vert A\vert$ denotes the cardinality of the set A. Let S be the space of sequences statistically convergent in X. Given a modulus f (for the definition see also the author [Math. Proc. Camb. Philos. Soc. 100, 161-166 (1986; Zbl 0631.46010)]), w(f) denotes the set of $(x\sb k)$ for which $\exists \ell \in X$ such that $(1/n)\sum\sp{n}\sb{k=1}f(q(x\sb k-\ell))\to 0$ as $n\to \infty$, $\forall q\in Q$. At last one says that $(x\sb k)$ is slowly oscillating if $(x\sb k-x\sb n)\to 0$ as $k\to \infty$, $n\ge k$ and n/k$\to 1$. For every modulus f, the following results hold: \par 1) $[x\sb k\to \ell (w(f))]\ \Rightarrow\ [x\sb k\to \ell (s)];$ \par 2) $[S\equiv w(f)]\ \Leftrightarrow\ [f$ is bounded] \par 3) $[x\sb k\to \ell (w(f))] \bigwedge [(x\sb k)$ is slowly oscillating]$\ \Rightarrow\ [x\sb k\to \ell].$ \par If X is a Banach space, and $w\sb 1$ is the space $w(f)$ with $f(t)=1$, then \par 4) $[w(f)$ is locally convex]$\ \Leftrightarrow\ [w(f)=w\sb 1]\ \Leftrightarrow\ [\lim\sb{t\to \infty}f(t)/t>0].$
[F.Barbieri]
MSC 2000:
*40J05 Summability in abstract structures
46A45 Sequence spaces

Keywords: statistical convergence; locally convex Hausdorff topological linear space

Citations: Zbl 0631.46010

Highlights
Master Server