×

Inertial manifolds for reaction diffusion equations in higher space dimensions. (English) Zbl 0674.35049

Scalar reaction-diffusion equations of the type \(u_ t=\nu \Delta u+f(x,u)\) with Dirichlet, Neumann or periodic boundary conditions on \(\Omega_ 3=(0,2\pi)^ 3\) or \(\Omega_ 2=(0,2\pi /a_ 1)\times (0,2\pi /a_ 2)\) are considered. The existence of an inertial manifold is proved under the assumption that the problem is dissipative and f is of the class \(C^ 3\). Former methods based on the spectral gap condition cannot be used because the Laplacian does not satisfy this condition on \(\Omega_ 3\). An abstract invariant manifold theorem for flows on a Hilbert space is given and it is used for the proof of the result mentioned above. The method cannot be extended to a higher space dimension because a certain basic property of the Schrödinger operator which is valid only for \(n\leq 3\) is essentially used.
Reviewer: M.Kučera

MSC:

35K60 Nonlinear initial, boundary and initial-boundary value problems for linear parabolic equations
35K57 Reaction-diffusion equations
34C30 Manifolds of solutions of ODE (MSC2000)
35P20 Asymptotic distributions of eigenvalues in context of PDEs
11B05 Density, gaps, topology
11E99 Forms and linear algebraic groups
47H10 Fixed-point theorems
11N05 Distribution of primes
35B40 Asymptotic behavior of solutions to PDEs
34C29 Averaging method for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. · Zbl 0314.46030
[2] J. E. Billotti and J. P. LaSalle, Dissipative periodic processes, Bull. Amer. Math. Soc. 77 (1971), 1082 – 1088. · Zbl 0274.34061
[3] P. Constantin and C. Foias, Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations, Comm. Pure Appl. Math. 38 (1985), no. 1, 1 – 27. · Zbl 0582.35092
[4] Peter Constantin, Ciprian Foias, Basil Nicolaenko, and Roger Temam, Nouveaux résultats sur les variétés inertielles pour les équations différentielles dissipatives, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986), no. 10, 375 – 378 (French, with English summary). · Zbl 0591.35064
[5] -, (1988), Integral manifolds and inertial manifolds for dissipative partial differential equations, Inst. Appl. Math. Sci. Comp. Preprint, Indiana Univ.
[6] P. Constantin, C. Foias, B. Nicolaenko, and R. Temam, Spectral barriers and inertial manifolds for dissipative partial differential equations, J. Dynam. Differential Equations 1 (1989), no. 1, 45 – 73. · Zbl 0701.35024
[7] P. Constantin, C. Foias, and R. Temam, Attractors representing turbulent flows, Mem. Amer. Math. Soc. 53 (1985), no. 314, vii+67. · Zbl 0567.35070
[8] D. E. Edmunds and W. D. Evans, Spectral theory and differential operators, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1987. Oxford Science Publications. · Zbl 0628.47017
[9] Neil Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J. 21 (1971/1972), 193 – 226. · Zbl 0246.58015
[10] C. Foias, O. Manley, and R. Temam, Attractors for the Bénard problem: existence and physical bounds on their fractal dimension, Nonlinear Anal. 11 (1987), no. 8, 939 – 967. · Zbl 0646.76098
[11] Ciprian Foias, George R. Sell, and Roger Temam, Variétés inertielles des équations différentielles dissipatives, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 5, 139 – 141 (French, with English summary). Ciprian Foias, Basil Nicolaenko, George R. Sell, and Roger Temam, Variétés inertielles pour l’équation de Kuramoto-Sivashinski, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 6, 285 – 288 (French, with English summary).
[12] -, (1988), Inertial manifold for the Kuramoto Sivashinsky equation, J. Math. Pures Appl. (to appear).
[13] Ciprian Foias, George R. Sell, and Roger Temam, Variétés inertielles des équations différentielles dissipatives, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 5, 139 – 141 (French, with English summary). Ciprian Foias, Basil Nicolaenko, George R. Sell, and Roger Temam, Variétés inertielles pour l’équation de Kuramoto-Sivashinski, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 6, 285 – 288 (French, with English summary).
[14] Ciprian Foias, George R. Sell, and Roger Temam, Inertial manifolds for nonlinear evolutionary equations, J. Differential Equations 73 (1988), no. 2, 309 – 353. · Zbl 0643.58004
[15] Foias, C., G. R. Sell, and E. Titi (1988), Exponential tracking and approximation of inertial manifolds for dissipative equations, Inst. Appl. Math. Sci. Comp. Preprint, Indiana Univ. · Zbl 0692.35053
[16] C. Foiaş and R. Temam, Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations, J. Math. Pures Appl. (9) 58 (1979), no. 3, 339 – 368. · Zbl 0454.35073
[17] Jack K. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. · Zbl 0642.58013
[18] Jack K. Hale, Luis T. Magalhães, and Waldyr M. Oliva, An introduction to infinite-dimensional dynamical systems — geometric theory, Applied Mathematical Sciences, vol. 47, Springer-Verlag, New York, 1984. With an appendix by Krzysztof P. Rybakowski. · Zbl 0533.58001
[19] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., The Clarendon Press, Oxford University Press, New York, 1979. · Zbl 0423.10001
[20] Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. · Zbl 0123.21502
[21] Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. · Zbl 0456.35001
[22] Edwin Hewitt and Karl Stromberg, Real and abstract analysis, Springer-Verlag, New York-Heidelberg, 1975. A modern treatment of the theory of functions of a real variable; Third printing; Graduate Texts in Mathematics, No. 25. · Zbl 0307.28001
[23] M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. · Zbl 0355.58009
[24] Kamaev, D. A. (1981), Hopf’s conjecture for a class of chemical kinetics equations, J. Soviet Math. 25, 836-849. · Zbl 0531.35040
[25] John Mallet-Paret, Negatively invariant sets of compact maps and an extension of a theorem of Cartwright, J. Differential Equations 22 (1976), no. 2, 331 – 348. · Zbl 0354.34072
[26] Mallet-Paret, J. and G. R. Sell (1988), Counterexamples to the existence of inertial manifolds.
[27] Ricardo Mañé, Reduction of semilinear parabolic equations to finite dimensional \?\textonesuperior flows, Geometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976) Springer, Berlin, 1977, pp. 361 – 378. Lecture Notes in Math., Vol. 597.
[28] Ricardo Mañé, On the dimension of the compact invariant sets of certain nonlinear maps, Dynamical systems and turbulence, Warwick 1980 (Coventry, 1979/1980), Lecture Notes in Math., vol. 898, Springer, Berlin-New York, 1981, pp. 230 – 242.
[29] Xavier Mora, Finite-dimensional attracting manifolds in reaction-diffusion equations, Nonlinear partial differential equations (Durham, N.H., 1982) Contemp. Math., vol. 17, Amer. Math. Soc., Providence, R.I., 1983, pp. 353 – 360. · Zbl 0525.35046
[30] Xavier Mora and Joan Solà-Morales, Diffusion equations as singular limits of damped wave equations, Differential equations (Xanthi, 1987) Lecture Notes in Pure and Appl. Math., vol. 118, Dekker, New York, 1989, pp. 499 – 506. Xavier Mora and Joan Solà-Morales, The singular limit dynamics of semilinear damped wave equations, J. Differential Equations 78 (1989), no. 2, 262 – 307. · Zbl 0699.35177
[31] B. Nicolaenko, B. Scheurer, and R. Temam, Some global dynamical properties of the Kuramoto-Sivashinsky equations: nonlinear stability and attractors, Phys. D 16 (1985), no. 2, 155 – 183. · Zbl 0592.35013
[32] -, (1987), Some global dynamical properties of a class of pattern formation equations, IMA Preprint No. 381.
[33] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. · Zbl 0516.47023
[34] V. A. Pliss, A reduction principle in the theory of stability of motion, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 1297 – 1324 (Russian). · Zbl 0131.31505
[35] Ian Richards, On the gaps between numbers which are sums of two squares, Adv. in Math. 46 (1982), no. 1, 1 – 2. · Zbl 0501.10047
[36] Robert J. Sacker, A perturbation theorem for invariant manifolds and Hölder continuity, J. Math. Mech. 18 (1969), 705 – 762 (German). · Zbl 0218.34046
[37] Robert J. Sacker and George R. Sell, The spectrum of an invariant submanifold, J. Differential Equations 38 (1980), no. 2, 135 – 160. · Zbl 0415.58015
[38] Roger Temam, Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1988. · Zbl 0662.35001
[39] G. L. Watson, Integral quadratic forms, Cambridge Tracts in Mathematics and Mathematical Physics, No. 51, Cambridge University Press, New York, 1960. · Zbl 0090.03103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.