×

The Hamiltonian structure of nonlinear elasticity: The material and convective representations of solids, rods, and plates. (English) Zbl 0668.73014

The authors systematically and explicitly derive the Hamiltonian structure of nonlinear three-dimensional elastodynamics, of rigid body dynamics and of geometrically exact rod and plate dynamical models. Each of these four topics is preceded by an introductory section to the corresponding theory in the geometric (covariant) spirit of the second author and T. J. R. Hughes [Mathematical foundations of elasticity (1983; Zbl 0545.73031)]. In each instance, three representations are studied: the material (Lagrangian) representation, the spatial (Eulerian) representation and the convected representation which is essentially a pull-back of the spatial representation onto the reference configuration. These introductory sections contain a wealth of useful formulae pertaining to each subject. The main section for each of the four topics consists in a derivation of the Hamiltonian form of the equations of motion in the Poisson bracket formalism \(\dot f=\{f,H\}\). Canonical and reduced Poisson brackets are systematically computed in each case and for each representation.
The article can thus be used as a reference source for developments based on the Hamiltonian structure of elastodynamics, e.g., among those announced here, nonlinear stability of flexible structures or numerical schemes that exactly preserve important physical quantities.
Reviewer: H.Le Dret

MSC:

74B20 Nonlinear elasticity
70H05 Hamilton’s equations
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74K20 Plates
70E15 Free motion of a rigid body

Citations:

Zbl 0545.73031
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. Abraham & J. Marsden [1978] Foundations of Mechanics, Second Edition, Addison Wesley. · Zbl 0393.70001
[2] R. Abraham, J. Marsden & T. Ratiu [1983] Manifolds, Tensor Analysis, and Applications, Addison-Wesley, Second Edition, Springer-Verlag, New York, 1988. · Zbl 0508.58001
[3] S. S. Antman [1972] The Theory of Rods, Handbuch der Physik, Vol. VIa/2, Springer, Berlin.
[4] S. S. Antman [1974] Kirchhoff’s Problem for Nonlinearly Elastic Rods, · Zbl 0302.73031 · doi:10.1090/qam/667026
[5] S. S. Antman & K. B. Jordan [1975] Qualitative Aspects of the Spatial Deformation of Non-linearly Elastic Rods, Proc. Roy · Zbl 0351.73076 · doi:10.1017/S0308210500016309
[6] S. S. Antman [1976] Ordinary Differential Equations of Nonlinear Elasticity I: Foundations of the Theories of Non-linearly Elastic Rods and Shells, Ar · Zbl 0354.73046 · doi:10.1007/BF00250722
[7] S. S. Antman [1978] Buckled States of Nonlinearly Elastic Plates, Ar · Zbl 0379.73047 · doi:10.1007/BF00249503
[8] S. Antman & C. S. Kenney [1981] Large Buckled States of Nonlinearly Elastic Rods Under Torsion, Thrust, and Gravity, Ar · Zbl 0472.73036 · doi:10.1007/BF00249969
[9] S. S. Antman [1984] Large Lateral Buckling of Nonlinearly Elastic Beams, Ar · Zbl 0533.73042 · doi:10.1007/BF00250585
[10] V. Arnold [1966] Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier, Grenoble 16, 319–361. · Zbl 0148.45301 · doi:10.5802/aif.233
[11] A. Chorin, T.J. R. Hughes, M. F. McCracken & J. E. Marsden [1978], Product formulas and Numerical Algorithms, · Zbl 0358.65082 · doi:10.1002/cpa.3160310205
[12] Y. Choquet-Bruhar, C. Dewitt-Morette & M. Dillard-Bleick [1984] Analysis, Manifolds, and Physics, North Holland, second edition. · Zbl 0385.58001
[13] P. Ciarlet [1988] Mathematical Elasticity. Volume 1: Three Dimensional Elasticity, Studies in Mathematics and its Applications, North-Holland, Amsterdam
[14] H. Cohen & C. N. DeSilva [1966] Nonlinear Theory of Elastic Directed · Zbl 0151.36904 · doi:10.1063/1.1705009
[15] D. Ebin & J. E. Marsden [1970] Groups of Diffeomorphisms and the Motion of an Incompre · Zbl 0211.57401 · doi:10.2307/1970699
[16] J. L. Ericksen & C. Truesdell [1958] Exact Theory of Stress and Strain in Rods and Shells, Ar · Zbl 0081.39303 · doi:10.1007/BF00298012
[17] H. Goldstein [1980] Classical Mechanics, Second Edition, Addison-Wesley.
[18] M. Golubitsky & I. Stewart [1987] Generic Bifurcation of Hamiltonian System · Zbl 0612.58013
[19] A. E. Green, P. M. Naghdi & W. L. Wainwright [1965] A General Theory of a Cosserat Surface, Ar · doi:10.1007/BF00253138
[20] A. E. Green & W. Zerna [1968] Theoretical Elasticity, Oxford U. Press.
[21] J. Guckenheimer & P. Holmes [1983] Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields, Springer-Verlag, New York. · Zbl 0515.34001
[22] D. D. Holm & B. A. Kuperschmidt [1983a] Poisson Brackets and Clebsch Representations for Magnetohydrodynamics, Multifluid Plasmas,
[23] D. D. Holm, J. E. Marsden & T. Ratiu [1986] The Hamiltonian Structure of Continuum Mechanics in the Material, Inverse Material, Spatial, and Convective Representations, Séminaire de Mathématiques Supérieures, 100, Les Presses de l’Université de Montréal. · Zbl 0611.70015
[24] D. D. Holm, J. E. Marsden, T. S. Ratiu & A. Weinstein [1985] Nonlinear Stability of Fluid and Plasm · Zbl 0717.76051 · doi:10.1016/0370-1573(85)90028-6
[25] P. Holmes & J. Marsden [1983] Horseshoes and Arnold Diffusion for Hamiltonian Systems on Lie Groups · Zbl 0488.70006 · doi:10.1512/iumj.1983.32.32023
[26] T. J. R. Hughes & J. Winget [1980] Finite Rotation Effects in Numerical Integration of Rate Constitutive Equations Arising in Large-Deformation Analysis, I · Zbl 0463.73081 · doi:10.1002/nme.1620151210
[27] T. J. R. Hughes, W. K. Liu & P. Caughy [1978] Transient Finite Element Formulations that Preserve Ener · Zbl 0392.73075 · doi:10.1115/1.3424303
[28] Z. R. Iwinski & L. A. Turski [1976] Canonical Theories of Systems Interacting Electromagnetically, Lett
[29] P. S. Krishnaprasad [1985] Lie Poisson Structures, Dual Spin Spacecraft and Asymptotic Stability, Nonlinear Analysis, Th · Zbl 0626.70028 · doi:10.1016/0362-546X(85)90083-5
[30] P. S. Krishnaprasad & J. E. Marsden [1987] Hamiltonian Structure and Stability for Rigid Bodies with Flexible Attachments, Ar · Zbl 0624.58010 · doi:10.1007/BF00279963
[31] P. S. Krishnasaprad, J. E. Marsden, T. Posbergh & J. C. Simo [1988] Nonlinear Stability of Coupled Rigid Body, Rod and Plate Structures (in preparation).
[32] D. Lewis, J. E. Marsden, R. Montgomery & T. Ratiu [1986] The Hamiltonian Structure for Dynamic Free Bo
[33] D. Lewis, J. E. Marsden & T. Ratiu [1986a] Formal Stability of Liquid Drops with Surface Tension, in Perspectives in Nonlinear Dynamics, ed. by M. F. Schlessinger and others, World Scientific, 71–83.
[34] D. Lewis, J. E. Marsden & T. Ratiu [1987] Stability and bifurcation of a rotating planar liquid drop (J. Math. Phys.). · Zbl 0651.76021
[35] A. Libai & J. G. Simmonds [1983] Nonlinear Elastic Shell Theory. Advances in Applied Mechanics, 23, 271–371, edited by J. Hutchinson and T. Wu. · Zbl 0575.73079
[36] A. E. H. Love [1944] The Mathematical Theory of Elasticity, 4th edition, Dover, New York. · Zbl 0063.03651
[37] J. E. Marsden [1982] A Group Theoretical Approach to the Equations of Plasma Physi · Zbl 0492.58015 · doi:10.4153/CMB-1982-019-9
[38] J. E. Marsden [1988] Lie-Poisson Hamilton Jacobi theory and Lie-Poisson Integrators, Phys. Lett. A. (to appear). · Zbl 1369.70038
[39] J. E. Marsden & T. Hughes [1983] Mathematical Foundations of Elasticity, Prentice Hall. · Zbl 0545.73031
[40] J. E. Marsden & T. Ratiu [1986] Reduction of Poisson Manifolds · Zbl 0602.58016 · doi:10.1007/BF00398428
[41] J. E. Marsden, T. Ratiu & A. Weinstein [1984a] Semi-direct Products and Reduction in Mechanic · doi:10.1090/S0002-9947-1984-0719663-1
[42] J. E. Marsden, T. Ratiu & A. Weinstein [1984b] Reduction and Hamiltonian Structures on Duals of Semidirect Product Lie A · doi:10.1090/conm/028/751975
[43] J. E. Marsden & A. Weinstein [1974] Reduction of Symplectic Manifolds with Sy · Zbl 0327.58005 · doi:10.1016/0034-4877(74)90021-4
[44] J. E. Marsden & A. Weinstein [1982] The Hamiltonian Structure of the Maxwell V · Zbl 1194.35463
[45] J. E. Marsden & A. Weinstein [1983] Coadjoint Orbits, Vortices and Clebsch Variables for Incomp · Zbl 0576.58008
[46] J. E. Marsden, A. Weinstein, T. Ratiu, R. Schmid & R. G. Spencer [1983] Hamiltonian Systems with Symmetry, Coadjoint Orbits and Plasma Physics, Proc. IUTAMISIMM Symposium on Modern Developments in Analytical Mechanics, Torino, June 7–11, 1982, Atti della Academia
[47] R. Montgomery, J. Marsden & T. Ratiu [1984] Gauged Lie-Poisson Structures, Conte · Zbl 0546.58026 · doi:10.1090/conm/028/751976
[48] P. J. Morrison & J. M. Greene [1980] Noncanonical Hamiltonian Density Formulation of Hydrodynamics and Ideal Magnetohydrody · doi:10.1103/PhysRevLett.45.790
[49] P. M. Naghdi [1972] The Theory of Plates and Shells, in Handbuch der Physik, Vol. VIa/2, Springer, Berlin.
[50] P. M. Naghdi [1980] Finite Deformations of Elastic Rods and Shells, in Proceedings IUTAM Symposium on Finite Elasticity, Lehigh University, Bethlehem.
[51] R. Reissner [1973] On a one-dimensional, large-displacement, finite-strain beam-t · Zbl 0267.73032 · doi:10.1002/sapm197352287
[52] E. Reissner [1981] On Finite Deformations of · Zbl 0467.73048 · doi:10.1007/BF00946983
[53] J. C. Simo & J. E. Marsden [1984] On the Rotated Stress Tensor and the Material Version of the Doyle-Ericksen formula, Arch. · Zbl 0567.73003 · doi:10.1007/BF00281556
[54] J. C. Simo [1985] A Finite Strain Beam Formulation. The Three Dimensional Dynamic Problem. Part I. Comp. · Zbl 0583.73037 · doi:10.1016/0045-7825(85)90050-7
[55] J. C. Simo & L. Vu-Quoc [1986a] A Three-Dimensional Finite Strain Rod Model. Part II: Computational Aspects. Comp. · Zbl 0608.73070 · doi:10.1016/0045-7825(86)90079-4
[56] J. C. Simo & L. Vu-Quoc [1986b] On the Dynamics of Flexible Beams Under Large Overall Motions–The plane Case; Parts · Zbl 0607.73057
[57] J. C. Simo & L. Vu-Quoc [1987] On the Dynamics in Space of Rods Urdegoing Large Overall Motions, Comp. Meth. Appl. Mech. Engng. (to appear).
[58] J. C. Simo & D. D. Fox [1988] On a Stress Resultant, Geometrically Exact Shell Model. Part I: Formulation and Optimal Parametrization, Comp. Meth. Appl. Mech. Engng. (to appear). · Zbl 0692.73062
[59] J. C. Simo [1987] On a Fully Three Dimensional Finite-Strain Viscoelastic Damage Model: Formulation and Computational Aspects, Comp. · Zbl 0588.73082 · doi:10.1016/0045-7825(87)90107-1
[60] J. C. Simo & L. Vu-Quoc [1986c] The role of Nonlinear Theories in Transient Dynamic Analysis of Flexible Structures, J. Sound and Vibration, (To appear). · Zbl 1235.74193
[61] J. C. Simo, D. D. Fox & M. S. Rifai, [1988a] On a Stress Resultant Geometrically Exact Shell Model. Part II: The Linear Theory, Computational Aspects, Comp. Meth. Appl. Mech. Engng. (to appear) · Zbl 0724.73138
[62] J. C. Simo, D. D. Fox & M. S. Rifai, [1988b] On a Stress Resultant Geometrically Exact Shell Model. Part III: Computational Aspects of the Nonlinear Theory, Comp. Meth. Appl. Mech. Engng. (to appear). · Zbl 0746.73015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.