×

On the identification of a Lie algebra given by its structure constants. I: Direct decompositions, Levi decompositions, and nilradicals. (English) Zbl 0668.17004

In this nice article the authors give the theoretical foundation for an algorithmic identification of finite-dimensional Lie algebras starting with their commutator relations and structure constants. This algorithm is the basis for corresponding computer programs presented in the paper reviewed above and answers the following questions for a Lie algebra L:
- Is L decomposable as the direct sum of Lie algebras ?
- If not so, is L simple or solvable ?
- If not so, how to find the radical and the Levi decomposition of L ?
- If L is solvable, how to find the nilradical?
The answers are given by a transformation to a canonical basis, where basis elements are grouped together corresponding to decompositions, ideals etc.
The explanation at first is rather elementary and then based on representation theory, linear algebra and Lie algebra methods. For the determination of nilradicals a new algorithm working without any irrational calculations is used. Pregnant examples are given, the algorithm seems to be very useful with respect to the determination of symmetry Lie algebras of differential equations.
Reviewer: G.Czichowski

MSC:

17B05 Structure theory for Lie algebras and superalgebras
68W30 Symbolic computation and algebraic computation
68W99 Algorithms in computer science

Software:

LIE0; MACSYMA
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Olver, P. J., Applications of Lie Groups to Differential Equations (1986), Springer: Springer Berlin · Zbl 0656.58039
[2] Schwarz, F., A REDUCE package for determining Lie symmetries of ordinary and partial differential equations, Comput. Phys. Comm.. Comput. Phys. Comm., Automatically determining symmetries of partial differential equations. Comput. Phys. Comm.. Comput. Phys. Comm., Automatically determining symmetries of partial differential equations, Computing, 34, 91-106 (1985) · Zbl 0555.65076
[3] Champagne, B.; Winternitz, P., A MACSYMA program for Calculating the Symmetry Group of a System of Differential Equations, (Preprint CRM-1278 (1985), Univ. de Montréal) · Zbl 0643.35097
[4] Humphreys, J. E., Introduction to Lie Algebras and Representation Theory (1972), Springer: Springer New York · Zbl 0254.17004
[5] Helgason, S., Differential Geometry, Lie Groups and Symmetric Spaces (1978), Academic: Academic New York · Zbl 0451.53038
[6] Mubarakzyanov, G. M., On solvable Lie algebras, Izv. Vyssh. Ucheb. Zaved. Mat.. Izv. Vyssh. Ucheb. Zaved. Mat., Classification of real Lie algebras of order five. Izv. Vyssh. Ucheb. Zaved. Mat.. Izv. Vyssh. Ucheb. Zaved. Mat., Classification of real Lie algebras of order five, Izv. Vyssh. Ucheb. Zaved. Mat., 3, 34, 100-106 (1963), in Russian · Zbl 0166.04201
[7] Patera, J.; Sharp, R. T.; Winternitz, P.; Zassenhaus, H., Invariants of Real low dimension Lie algebras, J. Math. Phys., 17, 986-994 (1976) · Zbl 0357.17004
[8] Morozov, V. V., Classification of nilpotent Lie algebras of order six, Izv. Vyssh. Ucheb. Zaved. Mat., 4, 5, 161-171 (1958), in Russian · Zbl 0198.05501
[9] Jacobson, N., Lie Algebras (1979), Dover: Dover New York · JFM 61.1044.02
[10] Zassenhaus, H., Lie Groups, Lie Algebras and Representation Theory (1981), Presses Univ. Montréal · Zbl 0462.17004
[11] Chevalley, C., Sur certains groups simples, Tôhuku Math. J., 7, 2, 14-66 (1955) · Zbl 0066.01503
[12] Zassenhaus, H., Über eine Verallgemeinerung de Henselschen Lemmas, Arch. Math., 5, 317-325 (1954) · Zbl 0056.26601
[13] Jacobson, N., Lectures in Abstract Algebra, Vol. 1 (1951), Springer: Springer New York
[14] van der Waerden, B. L., Modern Algebra (1950), Ungar: Ungar New York · Zbl 0037.01903
[15] Sonn, J.; Zassenhaus, H., On the theorem on the primitive element, Amer. Math. Monthly, 74, 407-410 (1967) · Zbl 0154.03901
[16] Rand, D. W.; Winternitz, P.; Zassenhaus, H., PASCAL programs for identification of Lie algebras II, Comput. Phys. Comm., 46, 297-309 (1987) · Zbl 0668.17002
[17] D’Hoker, E.; Vinet, L., Constants of motion for a \(spin-12\) particle in the field of a dyon, Phys. Rev. Lett.. Phys. Rev. Lett., Hidden symmetries and accidental degeneracy for a \(spin-12\) particle in the field of a dyon. Phys. Rev. Lett.. Phys. Rev. Lett., Hidden symmetries and accidental degeneracy for a \(spin-12\) particle in the field of a dyon, Lett. Math. Phys., 12, 71-76 (1986)
[18] Levi, E. E., (Opere, Vol. 1 (1959), Edizione Cremonese: Edizione Cremonese Rome), 101
[19] Rand, D. W., PASCAL programs for identification of Lie algebras III, Comput. Phys. Comm., 46, 311-322 (1987) · Zbl 0668.17003
[20] Patera, J.; Sharp, R. T.; Winternitz, P.; Zassenhaus, H., Continuous subgroups of the fundamental groups of physics III—the de Sitter groups, J. Math. Phys., 18, 2259-2288 (1977) · Zbl 0372.22008
[21] Rand, D. W., PASCAL programs for identification of Lie algebras I, Comput. Phys. Comm., 41, 105-125 (1986) · Zbl 0668.17001
[22] Beck, R. E.; Kolman, B.; Stewart, I. N., Computing the structure of a Lie algebra, (Computers in Non-associative Rings and Algebras (1977), Academic: Academic New York)
[23] Gagnon, L.; Winternitz, P., Lie symmetries of a generalized nonlinear Schrödinger equation. I. The symmetry group and its subgroups, J. Phys. A: Mat. Gen., 21, 1493-1511 (1988) · Zbl 0694.35174
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.