×

Castelnuovo’s regularity and multiplicity. (English) Zbl 0666.13012

The main result connects several invariants of an equidimensional locally Cohen-Macaulay graded \(K\)-algebra of dimension \(d\geq 1\) and an ideal \(\mathfrak q\) generated by a system of parameters of degree \(1\): \[ \text{length}(A/{\mathfrak q})-e_ 0({\mathfrak q};A)-\text{reg}(A/{\mathfrak q})\leq I(A)- \text{reg}(A), \tag{*} \] where \(e_ 0\) denotes multiplicity, \(I(A)=\sum^{d-1}_{j=0}\binom{d-1}{j}\text{length}(H^ j_{{\mathfrak m}}(A))\) (\(\mathfrak m\) the irrelevant maximal ideal), and \(\text{reg}(A)\) is the Castelnuovo regularity, i.e. the smallest number \(m\) such that the \(j\)-th syzygy module of \(\mathfrak a\) is generated by elements of degree \(m+j\), \(A\) being given in the form \(S/\mathfrak a\), \(S=K[X_ 0,\ldots,X_ n]\). Moreover it is shown that one has equality above if \(A\) is Buchsbaum, and that equality for every \(\mathfrak q\) implies that \(A/H^ 0_{{\mathfrak m}}(A)\) is Buchsbaum.
As an application the authors give a bound on \(\text{reg}(A)\) (and thus on the degrees of the generators of the syzygies of \(A\)) in the following manner: Let \(A=S/\mathfrak a\) as above and \([\mathfrak a]_ i=0\) in degrees \(i\leq t\); then \[ \text{reg}(A)\leq \deg(\mathfrak a)-\binom{t+\text{codim}(\mathfrak a)}{ t}+t+I(A). \] Under the slightly stronger hypothesis that \(A\) is arithmetically Cohen-Macaulay, this result has been previously proved by P. Maroscia and the authors [Math. Ann. 277, 53–65 (1987; Zbl 0634.14029)].
Furthermore for \(\dim(A)=1\) a precise condition on \(H^ 0_{\mathfrak m}(A)\) is given under which one has equality in (*) for all \(\mathfrak q\).
The paper concludes with several examples which show for example that equality in (*) for some \(\mathfrak q\) does not force \(A\) to be Buchsbaum and that \(A/H^ 0_{\mathfrak m}(A)\) being Buchsbaum does not imply equality in (*) for all \(\mathfrak q\).

MSC:

13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)
14M05 Varieties defined by ring conditions (factorial, Cohen-Macaulay, seminormal)
13H15 Multiplicity theory and related topics
13H05 Regular local rings

Citations:

Zbl 0634.14029
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Amasaki, M.: On the structure of arithmetically Buchsbaum curves in ? k 3 . Publ. Res. Inst. Math. Sci.20, 793-837 (1984) · Zbl 0574.14030 · doi:10.2977/prims/1195181111
[2] Auslander, M., Buchsbaum, D.A.: Codimension and multiplicity. Ann. Math.68, 625-657 (1958) · Zbl 0092.03902 · doi:10.2307/1970159
[3] Ballico, E.: On the defining equations of subvarieties in ? n . Boll. Un. Mat. Ital. A (6)5, 243-246 (1986) · Zbl 0601.14041
[4] Bayer, D., Stillman, A.: A criterion for detectingm-regularity. Invent. Math.87, 1-11 (1987) · Zbl 0625.13003 · doi:10.1007/BF01389151
[5] Briancon, J.: Sur le degré des relations entre polynomes. C.R. Acad. Sci. Paris Sér. 1 Math.297, 553-556 (1983)
[6] Castelnuovo, G.: Sui multipli di una serie lineare di gruppi di punti appartenente ad una curva algebrica. Rend. Circ. Mat. Palermo7, 89-110 (1893) · JFM 25.1035.02 · doi:10.1007/BF03012436
[7] Eisenbud, D., Goto, S.: Linear free resoltions and minimal multiplicity. J. Algebra88, 89-133 (1984) · Zbl 0531.13015 · doi:10.1016/0021-8693(84)90092-9
[8] Geramita, A.V.: The equations defining arithmetically Cohen-Macaulay varieties of dimension ?1. In: The curves seminar at Queen’s, Vol. III. Queen’s Pap. Pure Appl. Math.67, L1-L20 (1984)
[9] Goto, S., Shimoda, Y.: On Rees algebras over Buchsbaum rings. J. Math. Kyoto Univ.20, 691-708 (1980) · Zbl 0473.13010
[10] Gröbner, W.: Moderne algebraische Geometrie. Wien, Innsbruck: Springer 1949 · Zbl 0033.12706
[11] Gruson, L., Lazarsfeld, R., Peskine, C.: On a theorem of Castelnuovo, and the equations defining space curves. Invent. Math.72, 491-506 (1983) · Zbl 0565.14014 · doi:10.1007/BF01398398
[12] Maroscia, P., Vogel, W.: On the defining equations of points in general position in ? n . Math. Ann.269, 183-189 (1984) · Zbl 0547.14028 · doi:10.1007/BF01451418
[13] Maroscia, P., Stückrad, J., Vogel, W.: Upper bounds for the degrees of the equations defining locally Cohen-Macaulay schemes. Math. Ann.277, 53-65 (1987) · Zbl 0634.14029 · doi:10.1007/BF01457277
[14] Mumford, D.: Lectures on curves on an algebraic surface. Ann. Math. Studies 59, Princeton: Univ. Press 1966 · Zbl 0187.42701
[15] Ooishi, A.: Castelnuovo’s regularity of graded rings and modules. Hiroshima Math. J12, 627-644 (1982) · Zbl 0557.13007
[16] Pinkham, H.C.: A Castelnuovo bound for smooth surfaces. Invent. Math.83, 321-332 (1986) · Zbl 0612.14029 · doi:10.1007/BF01388966
[17] Sally, J.: Numbers of generators of ideals in local rings. New York Basel: Dekker 1978 · Zbl 0395.13010
[18] Sjögren, R.: On the regularity of gradedK-algebras of Krull dimension ?1. Reports No. 11. University of Stockholm, Dep. of Math., 1986
[19] Stückrad, J., Vogel, W.: Buchsbaum rings and applications. Berlin: WEB Deutscher Verlag der Wissenschaften and Berlin Heidelberg New York: Springer 1986 · Zbl 0606.13017
[20] Stückrad, J., Vogel, W.: Castelnuovo bounds for certain subvarieties in ? n . Math. Ann.276, 341-352 (1987) · Zbl 0628.14037 · doi:10.1007/BF01450748
[21] Stückrad, J., Vogel, W.: Castelnuovo bounds for locally Cohen-Macaulay schemes. Math. Narchr.136 (1988) (to appear) · Zbl 0662.14027
[22] Treger, R.: On equations defining arithmetically Cohen-Macaulay schemes. II. Duke Math. J.48, 35-47 (1981) · Zbl 0474.14030 · doi:10.1215/S0012-7094-81-04803-1
[23] Trung, N.V.: Toward a theory of generalized Cohen-Macaulay modules. Nagoya Math. J.102, 1-49 (1986) · Zbl 0637.13013
[24] Trung, N.V., Valla, G.: Degree bounds for the defining equations of arithmetically Cohen-Macaulay varieties. Math. Ann.281, 209-218 (1988) · Zbl 0616.14039 · doi:10.1007/BF01458428
[25] Zariski, O., Samuel, P.: Commutative algebra. Vol. II. Toronto New York London: van Nostrand 1960 · Zbl 0121.27801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.