×

Sampling surfaces formulation for thermoelastic analysis of laminated functionally graded shells. (English) Zbl 1388.74070

Summary: This paper focuses on implementation of the sampling surfaces (SaS) method for the three-dimensional (3D) thermal stress analysis of steady-state thermoelasticity problems for laminated functionally graded (FG) shells. The SaS formulation is based on choosing inside the \(n\)th layer \(I_n\) not equally spaced SaS parallel to the middle surface of the shell in order to introduce the temperatures and displacements of these surfaces as basic shell variables. Such choice of unknowns permits the presentation of the proposed thermoelastic FG shell formulation in a very compact form. The SaS are located inside each layer at Chebyshev polynomial nodes that improves the convergence of the SaS method significantly. As a result, the SaS formulation can be applied efficiently to analytical solutions for laminated FG shells, which asymptotically approach the 3D exact solutions of thermoelasticity as the number of SaS \(I_n\) tends to infinity.

MSC:

74K25 Shells
74F05 Thermal effects in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alibeigloo A (2010) Exact solution for thermo-elastic response of functionally graded rectangular plates. Compos Struct 92:113-121 · doi:10.1016/j.compstruct.2009.07.003
[2] Alibeigloo A (2014) Three-dimensional thermo-elasticity solution of sandwich cylindrical panel with functionally graded core. Compos Struct 107:458-468 · doi:10.1016/j.compstruct.2013.08.009
[3] Alibeigloo A, Liew KM (2013) Thermoelastic analysis of functionally graded carbon nanotube-reinforced composite plate using theory of elasticity. Compos Struct 106:873-881 · doi:10.1016/j.compstruct.2013.07.002
[4] Benveniste Y (1987) A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech Mater 6:147-157 · doi:10.1016/0167-6636(87)90005-6
[5] Birman V, Byrd LW (2007) Modeling and analysis of functionally graded materials and structures. Appl Mech Rev 60:195-216 · doi:10.1115/1.2777164
[6] Brischetto S, Carrera E (2011) Heat conduction and thermal analysis in multilayered plates and shells. Mech Res Commun 38:449-455 · Zbl 1272.74129 · doi:10.1016/j.mechrescom.2011.05.016
[7] Brischetto S, Carrera E (2013) Static analysis of multilayered smart shells subjected to mechanical, thermal and electrical loads. Meccanica 48:1263-1287 · Zbl 1293.74294 · doi:10.1007/s11012-012-9666-7
[8] Brogan WL (1985) Modern control theory. Prentice Hall, New Jersey · Zbl 0624.93001
[9] Burden RL, Faires JD (2010) Numerical analysis, 9th edn. Brooks/Cole, Cengage Learning, Boston · Zbl 0671.65001
[10] Carrera E (2003) Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking. Arch Comput Meth Eng 10:215-296 · Zbl 1140.74549 · doi:10.1007/BF02736224
[11] Cheng ZQ, Batra RC (2000) Three-dimensional thermoelastic deformations of a functionally graded elliptic plate. Compos B 31:97-106 · doi:10.1016/S1359-8368(99)00069-4
[12] Gol’denveizer AN (1961) Theory of thin elastic shells. Pergamon Press, New York
[13] Hashin Z (1968) Assessment of the self-consistent scheme approximation: conductivity of particulate composites. J Compos Mater 2:284-300 · doi:10.1177/002199836800200302
[14] Hatta H, Taya M (1985) Effective thermal conductivity of a misoriented short fiber composite. J Appl Phys 58:2478-2486 · doi:10.1063/1.335924
[15] Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13:213-222 · doi:10.1016/0022-5096(65)90010-4
[16] Jabbari M, Bahtui A, Eslami MR (2009) Axisymmetric mechanical and thermal stresses in thick short length FGM cylinders. Int J Pressure Vessels Piping 86:296-306 · doi:10.1016/j.ijpvp.2008.12.002
[17] Jha DK, Kant T, Singh RK (2013) A critical review of recent research on functionally graded plates. Compos Struct 96:833-849 · doi:10.1016/j.compstruct.2012.09.001
[18] Kashtalyan M (2004) Three-dimensional elasticity solution for bending of functionally graded rectangular plates. Eur J Mech A/Solids 23:853-864 · Zbl 1058.74569 · doi:10.1016/j.euromechsol.2004.04.002
[19] Kovalenko AD (1969) Thermoelasticity. Basic theory and applications. Wolters-Noordhoff, Groningen · Zbl 0209.56303
[20] Kulikov GM (2001) Refined global approximation theory of multilayered plates and shells. J Eng Mech 127:119-125 · doi:10.1061/(ASCE)0733-9399(2001)127:2(119)
[21] Kulikov GM, Carrera E (2008) Finite deformation higher-order shell models and rigid-body motions. Int J Solids Struct 45:3153-3172 · Zbl 1169.74477 · doi:10.1016/j.ijsolstr.2008.01.020
[22] Kulikov GM, Plotnikova SV (2011) Solution of statics problems for a three-dimensional elastic shell. Doklady Phys 56:448-451 · doi:10.1134/S1028335811080076
[23] Kulikov GM, Plotnikova SV (2012) On the use of sampling surfaces method for solution of 3D elasticity problems for thick shells. ZAMM J Appl Math Mech 92:910-920 · Zbl 1348.74224 · doi:10.1002/zamm.201200028
[24] Kulikov GM, Plotnikova SV (2013) Advanced formulation for laminated composite shells: 3D stress analysis and rigid-body motions. Compos Struct 95:236-246 · doi:10.1016/j.compstruct.2012.07.020
[25] Kulikov GM, Plotnikova SV (2014) Heat conduction analysis of laminated shells by a sampling surfaces method. Mech Res Commun 55:59-65 · doi:10.1016/j.mechrescom.2013.10.018
[26] Kulikov GM, Plotnikova SV (2014) 3D exact thermoelastic analysis of laminated composite shells via sampling surfaces method. Compos Struct 115:120-130 · doi:10.1016/j.compstruct.2014.04.019
[27] Kulikov GM, Plotnikova SV (2015) Three-dimensional thermal stress analysis of laminated composite plates with general layups by a sampling surfaces method. Eur J Mech A/Solids 49:214-226 · Zbl 1406.74071 · doi:10.1016/j.euromechsol.2014.07.011
[28] Kulikov GM, Plotnikova SV (2015) A sampling surfaces method and its implementation for 3D thermal stress analysis of functionally graded plates. Compos Struct 120:315-325 · doi:10.1016/j.compstruct.2014.10.012
[29] Kulikov GM, Plotnikova SV, Mamontov AA (2015) Coupled thermoelectroelastic stress analysis of piezoelectric shells. Compos Struct 124:65-76 · doi:10.1016/j.compstruct.2014.12.045
[30] Levin VM (1967) Thermal expansion coefficients of heterogeneous materials. Mekhanika Tverdogo Tela N2:88-94
[31] Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21:571-574 · doi:10.1016/0001-6160(73)90064-3
[32] Ootao Y (2011) Transient thermoelastic analysis for a multilayered thick strip with piecewise exponential nonhomogeneity. Compos B 42:973-981 · doi:10.1016/j.compositesb.2010.12.011
[33] Ootao Y, Ishihara M (2013) Three-dimensional solution for transient thermoelastic problem of a functionally graded rectangular plate with piecewise exponential law. Compos Struct 106:672-680 · doi:10.1016/j.compstruct.2013.06.019
[34] Ootao Y, Tanigawa Y (2007) Three-dimensional solution for transient thermal stresses of an orthotropic functionally graded rectangular plate. Compos Struct 80:10-20 · doi:10.1016/j.compstruct.2006.02.028
[35] Pagano NJ (1970) Exact solutions for rectangular bidirectional composites and sandwich plates. J Compos Mater 4:20-34
[36] Pelletier JL, Vel SS (2006) An exact solution for the steady-state thermoelastic response of functionally graded orthotropic cylindrical shells. Int J Solids Struct 43:1131-1158 · Zbl 1119.74475 · doi:10.1016/j.ijsolstr.2005.03.079
[37] Plevako VP (1971) On the theory of elasticity of inhomogeneous media. J Appl Math Mech 35:806-813 · Zbl 0252.73013 · doi:10.1016/0021-8928(71)90078-5
[38] Reddy JN (2004) Mechanics of laminated composite plates and shells: theory and analysis, 2nd edn. CRC Press, Boca Raton · Zbl 1075.74001
[39] Reddy JN, Cheng ZQ (2001) Three-dimensional thermomechanical deformations of functionally graded rectangular plates. Eur J Mech A/Solids 20:841-855 · Zbl 1002.74061 · doi:10.1016/S0997-7538(01)01174-3
[40] Rosen BW, Hashin Z (1970) Effective thermal expansion coefficients and specific heats of composite materials. Int J Eng Sci 8:157-173 · doi:10.1016/0020-7225(70)90066-2
[41] Runge C (1901) Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten. Z Math Physik 46:224-243 · JFM 32.0272.02
[42] Soldatos KP, Hadjigeorgiou VP (1990) Three-dimensional solution of the free vibration problem of homogeneous isotropic cylindrical shells and panels. J Sound Vibr 137:369-384 · Zbl 1235.74121 · doi:10.1016/0022-460X(90)90805-A
[43] Tarn JQ, Wang YM (1995) Asymptotic thermoelastic analysis of anisotropic inhomogeneous and laminated plates. J Therm Stress 18:35-58 · doi:10.1080/01495739508946289
[44] Tornabene F, Fantuzzi N, Viola E, Carrera E (2014) Static analysis of doubly-curved anisotropic shells and panels using CUF approach, differential geometry and differential quadrature method. Compos Struct 107:675-697 · doi:10.1016/j.compstruct.2013.08.038
[45] Tornabene F, Viola E, Fantuzzi N (2013) General higher-order equivalent single layer theory for free vibrations of doubly-curved laminated composite shells and panels. Compos Struct 104:94-117 · doi:10.1016/j.compstruct.2013.04.009
[46] Vel SS (2011) Exact thermoelastic analysis of functionally graded anisotropic hollow cylinders with arbitrary material gradation. Mech Adv Mater Struct 18:14-31 · doi:10.1080/15376494.2010.519218
[47] Vel SS, Batra RC (2002) Exact solution for thermoelastic deformations of functionally graded thick rectangular plates. AIAA J 40:1421-1433 · doi:10.2514/2.1805
[48] Vel SS, Batra RC (2003) Three-dimensional analysis of transient thermal stresses in functionally graded plates. Int J Solids Struct 40:7181-7196 · Zbl 1076.74037 · doi:10.1016/S0020-7683(03)00361-5
[49] Vlasov BF (1957) On the bending of a rectangular thick plate. Vestnik Moskovskogo Universiteta. Matematika Mekhanika Astronomia N2:25-31
[50] Woodward B, Kashtalyan M (2011) Three-dimensional elasticity solution for bending of transversely isotropic functionally graded plates. Eur J Mech A/Solids 30:705-718 · Zbl 1278.74105 · doi:10.1016/j.euromechsol.2011.04.003
[51] Wu CP, Chiu KH, Wang YM (2008) A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells. Comput Mater Continua 8:93-132
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.