×

Intersection bodies and dual mixed volumes. (English) Zbl 0657.52002

Let \(H_ u\) denote an arbitrary (n-1)-subspace of \({\mathbb{R}}^ n(n>2)\), orthogonal to the direction u. If we write \(K^ n\) for the set of n- dimensional convex bodies and \(\Pi^ n\) for the set of n-zonoids, then C. M. Petty [Proc. Colloq. Convexity, Copenhagen 1965, 234-241 (1967; Zbl 0152.206)] and R. Schneider [Math. Z. 101, 71-82 (1967; Zbl 0173.247)] have shown that for \(K\in K^ n\) and \(L\in \Pi^ n\) the implication \[ V_{d-1}(K| H_ u)< V_{d-1}(L| H_ u)\quad for\quad all\quad directios\quad u\quad \Rightarrow \quad V_ d(K)< V_ d(L) \] holds, where \(V_ i\) denotes the i-dimensional Lebesgue measure and \(K| H_ u\) is the image of the orthogonal projection of \(K\in K^ n\) onto \(H_ u\). The main result of the present paper is a generalization of a ‘dual’ statement. Namely, let \(S^ n\) denote the set of n-dimensional bodies which are star-shaped with respect to the origin. The intersection body IK of \(K\in S^ n\) is the star body defined by \(r(IK,u)=V_{d-1}(K\cap H_ u)\) for each direction u, in which \(r(M,u)=\max \{\lambda \geq 0:\) \(\lambda\) \(u\in M\}\) is the usual radius function of a compact set M in \({\mathbb{R}}^ n\). If \(I^ n\) denotes the set of intersection bodies, then for \(K\in I^ n\) and \(L\in S^ n\) the implication \[ IK\subset IL\quad \Rightarrow \quad V_ d(K)\leq V_ d(L) \] is shown, where \(V_ d(K)=V_ d(L)\) only if \(K=L.\)
On the other hand, if K is a star body not symmetric about the origin, then there exists a star body L with \[ V_{d-1}(K\cap H_ u)<V_{d- 1}(L\cap H_ u)\quad for\quad all\quad directions\quad u\quad \Rightarrow \quad V_ d(K)>V_ d(L). \] For proving these and other interesting results, the author uses dual mixed volumes as a suitable method for solving problems involving intersections. (Conversely, for projection problems the use of mixed volumes is a well-known, powerful method.)
Therefore one can find also extensive, informative material to several topics concerning mixed volumes (e.g. projection bodies and the Petty- Schneider result) which are compared with corresponding subjects related to dual mixed volumes (e.g. intersection bodies and a known problem of Busemann and Petty which seemingly gave the main motivation for that paper).
From this viewpoint, the paper might be considered as a useful survey on various important tools from geometric convexity, too.
Reviewer: H.Martini

MSC:

52A20 Convex sets in \(n\) dimensions (including convex hypersurfaces)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aleksandrov, A. D., On the theory of mixed volumes of convex bodies. I. Extensions of certain concepts in the theory of convex bodies, Mat. Sb. N.S., 2, 947-972 (1937), [Russian] · Zbl 0017.42603
[2] Aleksandrov, A. D., On the theory of mixed volumes of convex bodies. II. New inequalities between mixed volumes and their applications, Mat. Sb. N.S., 2, 1205-1238 (1937), [Russian] · Zbl 0018.27601
[3] Aleksandrov, A. D., On the theory of mixed volumes of convex bodies. III. Extensions of two theorems of Minkowski on convex polyhedra to arbitrary convex bodies, Mat. Sb. N.S., 3, 27-46 (1938), [Russian]
[4] Aleksandrov, A. D., On the surface area function of a convex body, Mat. Sb. N.S., 6, 167-174 (1939), [Russian]
[5] Bolker, E. D., A class of convex bodies, Trans. Amer. Math. Soc., 145, 323-345 (1969) · Zbl 0194.23102
[6] Bonnesen, T.; Fenchel, W., Theorie der konvexen Körper (1934), Springer-Verlag: Springer-Verlag Berlin · Zbl 0008.07708
[7] Burago, Ju. D.; Zalgaller, V. A., Geometric Inequalities (1988), Springer-Verlag: Springer-Verlag Berlin · Zbl 0633.53002
[8] Busemann, H., A theorem on convex bodies of the Brunn-Minkowski type, (Proc. Nat. Acad. Sci. U.S.A., 35 (1949)), 27-31 · Zbl 0032.19001
[9] Busemann, H., The isoperimetric problem for Minkowski area, Amer. J. Math., 71, 743-762 (1949) · Zbl 0038.10301
[10] Busemann, H., The foundations of Minkowskian geometry, Comment. Math. Helv., 24, 156-187 (1950) · Zbl 0040.37502
[11] Busemann, H., Volume in terms of concurrent cross-sections, Pacific J. Math., 3, 1-12 (1953) · Zbl 0050.16702
[12] Busemann, H., Convex Surfaces (1958), Interscience: Interscience New York · Zbl 0196.55101
[13] Busemann, H., Volumes and areas of cross-sections, Amer. Math. Monthly, 67, 248-250 (1960) · Zbl 0091.35403
[14] Busemann, H.; Petty, C. M., Problems on convex bodies, Math. Scand., 4, 88-94 (1956) · Zbl 0070.39301
[15] Federer, H., Geometric Measure Theory (1969), Springer-Verlag: Springer-Verlag New York · Zbl 0176.00801
[16] Fenchel, W.; Jessen, B., Mengenfunktionen und konvexe Körper, Danske Vid. Selskab. Mat.-Fys. Medd., 16, 1-31 (1938) · Zbl 0018.42401
[17] Firey, W. J., Blaschke sums of convex bodies and mixed bodies, (Proceedings, Coll. Convexity. Proceedings, Coll. Convexity, Copenhagen, 1965 (1967), Københavns Univ. Mat. Inst), 94-101 · Zbl 0153.51902
[18] Firey, W. J.; Grünbaum, B., Addition and decomposition of convex polytopes, Israel J. Math., 2, 91-100 (1964) · Zbl 0131.20102
[19] Giertz, M., A note on a problem of Busemann, Math. Scand., 25, 145-148 (1969) · Zbl 0189.22902
[20] Goikhman, D. M., The differentiability of volume in Blaschke lattices, Siberian Math. J., 15, 997-999 (1974) · Zbl 0305.52008
[21] E.L. Grinberg and I. Rivin; E.L. Grinberg and I. Rivin
[22] Grünbaum, B., Convex Polytopes (1967), Interscience: Interscience New York · Zbl 0163.16603
[23] Hadwiger, H., Radialpotenzintegrale zentralsymmetrischer Rotationskörper und ungleichheitsaussagen Busemannscher art, Math. Scand., 23, 193-200 (1968) · Zbl 0182.55602
[24] Helgason, S., The Radon Transform (1980), Birkhäuser: Birkhäuser Boston · Zbl 0453.43011
[25] Larman, D. G.; Rogers, C. A., The existence of a centrally symmetric convex body with central sections that are unexpectedly small, Mathematika, 22, 164-175 (1975) · Zbl 0325.52007
[26] Leichtweiss, K., Konvexe Mengen (1980), Springer-Verlag: Springer-Verlag Berlin · Zbl 0427.52001
[27] Lutwak, E., Dual mixed volumes, Pacific J. Math., 58, 531-538 (1975) · Zbl 0273.52007
[28] Lutwak, E., Mean dual and harmonic cross-sectional measures, Ann. Mat. Pura Appl., 119, 139-148 (1979) · Zbl 0411.52004
[29] Lutwak, E., Volume of mixed bodies, Trans. Amer. Math. Soc., 294, 487-500 (1986) · Zbl 0591.52016
[30] Lutwak, E., On some affine isoperimetric inequalities, J. Differential Geom., 23, 1-13 (1986) · Zbl 0592.52005
[31] Lutwak, E., Inequalities for Hadwiger’s harmonic Quermassintegrals, Math. Ann., 280, 165-175 (1988) · Zbl 0617.52007
[32] Petty, C. M., Projection bodies, (Proceedings, Coll. Convexity. Proceedings, Coll. Convexity, Copenhagen, 1965 (1967), Københavns Univ. Mat. Inst), 234-241 · Zbl 0152.20601
[33] Santaló, L. A., Integral Geometry and Geometric Probability (1976), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0063.06708
[34] Schneider, R., Zu einem Problem von Shephard über die Projectionen konvexer Körper, Math. Z., 101, 71-82 (1967) · Zbl 0173.24703
[35] Schneider, R., Functional equations connected with rotations and their geometric applications, Enseign. Math., 16, 297-305 (1970) · Zbl 0209.26502
[36] Schneider, R., Boundary structure and curvature of convex bodies, (Tölke, J.; Will, J. M., Contributions to Geometry (1979), Birkhäuser: Birkhäuser Basel), 296-317
[37] Schneider, R.; Weil, W., Zonoids and related topics, (Gruber, P. M.; Wills, J. M., Convexity and Its Applications (1983), Birkhäuser: Birkhäuser Basel), 296-317 · Zbl 0524.52002
[38] Shephard, G. C., Shadow systems of convex bodies, Israel J. Math., 2, 229-236 (1964) · Zbl 0132.17304
[39] Strichartz, R. S., \(L^p\) estimates for Radon transforms in Euclidean and non-Euclidean spaces, Duke Math. J., 48, 699-727 (1981) · Zbl 0477.44003
[40] Treves, F., Topological Vector Spaces, Distributions and Kernels (1967), Academic Press: Academic Press New York · Zbl 0171.10402
[41] Ball, K., Cube slicing in \(R^n\), (Proc. Amer. Math. Soc., 97 (1986)), 465-473 · Zbl 0601.52005
[42] Ball, K., Some remarks on the geometry of convex sets, (Lindenstrauss, J.; Milman, V. D., Geometric Aspects of Functional Analysis—1986-1987. Geometric Aspects of Functional Analysis—1986-1987, Springer Lecture Notes, Vol. 1317 (1988), Springer-Verlag: Springer-Verlag Berlin), 224-231
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.