×

On a local existence theorem of Neumann problem for some quasilinear hyperbolic system of 2nd order. (English) Zbl 0652.35077

It is studied the local existence in time of classical solutions to the mixed problem for the quasilinear hyperbolic system of second order with Neumann type boundary condition. The equation is quasilinear but the boundary condition is fully nonlinear. The full nonlinearity has kept away from proving the local existence theorem, because it breaks down the usual iteration process. Our idea of solving the problem is to introduce the time derivative of the original unknown function as the new unknown function and to reduce the original problem to some hyperbolic-elliptic system.
As an application, we can show the local existence in time of classical solutions to Neumann or third kind problems for nonlinear acoustical equations. And also, as another application, we can get a local existence theorem for nonlinear elastodynamical systems with traction boundary condition when the pressure and the displacement is very small in the initial state.
Reviewer: Y.Shibata

MSC:

35L70 Second-order nonlinear hyperbolic equations
35A07 Local existence and uniqueness theorems (PDE) (MSC2000)
35B65 Smoothness and regularity of solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Chen, V.C., Wahl, W. v.: Das Rand-Anfangswertproblem für quasilineare Wellengleichungen in Sobolevräumen niedriger Ordnung. J. Reine Angew. Math.337, 77-112 (1982) · Zbl 0486.35053 · doi:10.1515/crll.1982.337.77
[2] Ciarlet, P.G.: Lectures on three-dimensional elasticity: Tata Inst. Fund. Research, Bombay, 1983 · Zbl 0542.73046
[3] Dafermos, C.M., Hrusa, W.J.: Energy method for quasilinear hyperbolic initial-boundary value problem, Applications to elastodynamics. Arch. Rational Mech. Anal.87, 267-292 (1985) · Zbl 0586.35065 · doi:10.1007/BF00250727
[4] Dionne, P.: Sur les problème de Cauchy hyperboliques bien poses. J. Anal. Math.10, 1-90 (1962) · Zbl 0112.32301 · doi:10.1007/BF02790303
[5] Hughes, T.J.R., Kato, T., Marsden, J.E.: Well-posed quasilinear second order hyperbolic systems with applications to nonlinear elastodynamics and general relativity. Arch. Rational Mech. Anal.63, 273-294 (1977) · Zbl 0361.35046 · doi:10.1007/BF00251584
[6] Ikawa, M.: A mixed problem for hyperbolic equations of second order with non-homogeneous Neumann type boundary condition. Osaka J. Math.6, 339-374 (1969) · Zbl 0207.10003
[7] John, F.: Delayed singularities formation in solutions of nonlinear wave equations in higher dimensions. Commun. Pure Appl. Math.29, 649-687 (1976) · Zbl 0332.35044 · doi:10.1002/cpa.3160290608
[8] John, F.: Finite amplitude wave in a homogeneous isotropic elastic solid. Commun. Pure Appl. Math.30, 421-446 (1977) · Zbl 0404.73023 · doi:10.1002/cpa.3160300404
[9] Kato, T.: Quasilinear equations of evolution with applications to partial differential equations. In: Everitt, W.N. (ed.) Spectral Theory and Differential Equations. Proceedings, Dundee 1974 (Lect. Notes Math., vol. 448, pp. 25-70), Berlin Heidelberg New York: Springer 1975
[10] Kato, T.: Linear and quasilinear equations of evolution of hyperbolic type. C.I.M.E.,II, 127-191 (1976)
[11] Kato, T.: Lecture at Tokyo Univ., Spring in 1984
[12] Lax, P.D.: Hyperbolic systems of conservation laws and the mathematical theory of shock waves: SIAM Reg. Conf. Lecture 11, Philadelphia 1973 · Zbl 0268.35062
[13] Marsden, J.E., Hughes, T.J.R.: Mathematical foundations of elasticity. Englewood Cliffs: Prentice-Hall 1983 · Zbl 0545.73031
[14] Mizohata, S.: The theory of partial differential equations. Cambridge: University Press 1973 · Zbl 0263.35001
[15] Moser, J.: A rapidly convergent iteration method and nonlinear partial differential equations I, Ann. Scuola Norm. Pisa20, 265-315 (1960)
[16] Muramatsu, T.: Besov spaces and Sobolev spaces of generalized functions defined on a general region. Publ R.I.M.S. Kyoto Univ.9, 325-396 (1974) · Zbl 0287.46046 · doi:10.2977/prims/1195192564
[17] Shibata, Y.: On the global existence of classical solutions of mixed problem for some second order nonlinear hyperbolic operators with dissipative term in the interior domain. Funkc. Ekvacioy25, 303-345 (1982) · Zbl 0524.35070
[18] Shibata, Y.: On a local existence theorem of Neumann problem for some quasilinear hyperbolic equations. In: Vaillant, J. (ed.) Calcul d’opérateurs et fronts d’ondes. Travaux en cours. vol. 29, pp. 133-167, Paris: Hermann 1988
[19] Shibata, Y.: On the Neumann problem for some linear hyperbolic systems of second order. Tsukuba J. Math.12, 149-209 (1988) · Zbl 0674.35056
[20] Shibata, Y., Tsutsumi, Y.: On a global existence theorem of Neumann problem for quasilinear hyperbolic equation. Lect. Notes Numer. Appl. Anal.8, 175-229 (1985) · Zbl 0653.35059
[21] Shibata, Y., Tsutsumi, Y.: Local existence ofC ? solution for the initial-boundary value problem of fully nonlinear wave equations. Nonlinear Anal. Theory Methods Appl.11 (3), 335-365 (1987). · Zbl 0651.35053 · doi:10.1016/0362-546X(87)90051-4
[22] Simpson, H.C., Spector, S.J.: On the positivity of the second variation in finite elasticity. Arch. Rational Mech. Anal.98, 1-30 (1987) · Zbl 0657.73027 · doi:10.1007/BF00279960
[23] Weidemaier, P.: Existence of regular solutions for a quasilinear wave equation with the third boundary condition. Math. Z.191, 449-465 (1986) · doi:10.1007/BF01162719
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.