×

Bernstein-Gelfand-Gelfand reciprocity on perverse sheaves. (English) Zbl 0651.14010

In this paper, the authors generalize the results of [BGG]: I. N. Bernshteĭn, I. M. Gel’fand and S. I. Gel’fand [Funct. Anal. Appl. 10, 87–92 (1976); translation from Funkts. Anal. Prilozh. 10, No. 2, 1–8 (1976; Zbl 0353.18013)] to the cateory of perverse sheaves \(P(X)\) on an analytic space \(X\) with a Whitney stratification \(\mathcal S\) satisfying \(\pi_1(S)=0\) for all \(S\in\mathcal S\) and \(\pi_2(S)=0\) if \(\dim(S)<\dim(X)\). The results in [BGG] can be recovered from this by considering the flag manifold \(X\) associated to a complex semisimple group, stratified by the Schubert cells, and applying the Riemann-Hilbert correspondence. The main results are the following:
(Theorem 1.1) The category \(P(X)\) is equivalent to the category of finitely generated \(A\)-modules, for some associative \(\mathbb C\)-algebra with identity \(A\) which is of finite dimension over \(\mathbb C\). Furthermore, if \(L_1,\ldots, L_r\) are the irreducible objects of \(P(X)\), \(P_i\to L_i\) projective covers and \(C_{ij}=[P_i:L_j]\) is the multiplicity of \(L_j\) in the Jordan-Hölder series of \(P_i\), the matrix \(C=(C_{ij})\) is symmetric.
In fact, the authors give a more precise result in the case that \(\bar S-S\) is a Cartier divisor in \(\bar S\) for all \(S\in\mathcal S\): (Theorem 1.3) There exists \(M_1,\ldots, M_{\ell}\in P(X)\) such that the modules \(P_i\) have a decomposition series with factors isomorphic to the \(M^i_k\) and \([P_i:M_k]=[M_k:L_i]\) (BGG reciprocity). In particular \(C= {}^tDD\), \(D_{kj}=[M_k:L_j]\).
Furthermore every projective object in \(P(X)\) has a \(p\)-filtration (cf. [BGG]) and \(P(X)\) has projective dimension \(\leq 2\cdot \max \{\dim(X)-\dim(S)\mid S\in\mathcal S\}\). The \(M_k\) are explicitly obtained from \(\mathcal S\).
All the results in the paper are independent of the base field \(\mathbb C\), and are obtained using the inductive construction of perverse sheaves by R. MacPherson and K. Vilonen [Invent. Math. 84, 403–435 (1986; Zbl 0597.18005)].

MSC:

14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
32C38 Sheaves of differential operators and their modules, \(D\)-modules
32S60 Stratifications; constructible sheaves; intersection cohomology (complex-analytic aspects)
18F20 Presheaves and sheaves, stacks, descent conditions (category-theoretic aspects)
PDFBibTeX XMLCite
Full Text: DOI Numdam EuDML

References:

[1] H. BASS , Algebraic K-Theory , W. A. Benjamin, New York, 1968 . MR 40 #2736 | Zbl 0174.30302 · Zbl 0174.30302
[2] A. BEILINSON and J. BERNSTEIN , Localisation des g-Modules (C.R. Acad. Sci. Paris, T. 292, Série I, 1981 , pp. 15-18). MR 82k:14015 | Zbl 0476.14019 · Zbl 0476.14019
[3] A. BEILINSON , J. BERNSTEIN and P. DELIGNE , Faisceaux Pervers (Astérisque, Vol. 100, 1983 ). MR 86g:32015 | Zbl 0536.14011 · Zbl 0536.14011
[4] J. BERNSTEIN , I. GELFAND and S. GELFAND , Category of g-Modules (Functional Anal. Appl., Vol. 10, 1976 , pp. 87-92). MR 53 #10880 | Zbl 0353.18013 · Zbl 0353.18013 · doi:10.1007/BF01077933
[5] J.-L. BRYLINSKI and M. KASHIWARA , Kazhdan-Lusztig Conjecture and Holonomic Systems (Inv. Math., Vol. 64, 1981 , pp. 387-410). MR 83e:22020 | Zbl 0473.22009 · Zbl 0473.22009 · doi:10.1007/BF01389272
[6] C. CURTIS and I. REINER , Representation Theory of Finite Groups and Associative Algebras , Wiley, 1962 . MR 26 #2519 | Zbl 0131.25601 · Zbl 0131.25601
[7] M. GORESKY and R. MACPHERSON , Morse Theory and Intersection Homology (Asterisque, Vol. 101, 1983 , pp. 135-192). MR 86i:32019 | Zbl 0524.57022 · Zbl 0524.57022
[8] J. E. HUMPHREYS , Modular Representations of Classical Lie Algebras and Semisimple Groups (J. Algebra, Vol. 19, 1971 , pp. 51-79). MR 44 #271 | Zbl 0219.17003 · Zbl 0219.17003 · doi:10.1016/0021-8693(71)90115-3
[9] M. KASHIWARA , The Riemann-Hilbert Problem for Holonomic Systems (Publ. R.I.M.S., Kyoto, Vol. 20, 1984 , pp. 319-365). Article | MR 86j:58142 | Zbl 0566.32023 · Zbl 0566.32023 · doi:10.2977/prims/1195181610
[10] R. MACPHERSON and K. VILONEN , Une construction élémentaire des faisceaux pervers (C.R. Acad. Sci. Paris, T. 299, Series I, 1984 , pp. 443-446). MR 86g:32014 | Zbl 0581.14013 · Zbl 0581.14013
[11] R. MACPHERSON and K. VILONEN , Elementary Construction of Perverse Sheaves (Inv. Math., 1986 ). MR 87m:32028 | Zbl 0597.18005 · Zbl 0597.18005 · doi:10.1007/BF01388812
[12] Z. MEBKHOUT , Une équivalence de catégorie et une autre équivalence de catégories (Comp. Math., Vol. 51, 1984 , pp. 51-88). Numdam | MR 85k:58072 | Zbl 0566.32021 · Zbl 0566.32021
[13] J. P. MURRE , Sur la pro-représentabilité de certains foncteurs en géométrie algébrique , mimeographed notes, 1964 .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.