×

Moduli spaces of curves and representation theory. (English) Zbl 0647.17010

Let \(d\) be the Lie algebra of holomorphic vector fields on \({\mathbb C}^{\times}\); it acts on the space \(V_ n\) of holomorphic differentials of degree \(n\) on \({\mathbb C}^{\times}\). This gives a homomorphism \(d\to a_{\infty}\), the Lie algebra of “restricted” endomorphisms of \(V_ n\). The universal central extension of \(a_{\infty}\) pulls back to \((6n^ 2-6n+1)\)-times that of \(d\).
On the other hand, if \(\pi: {\mathbb C}\to S\) is a family of genus \(g\) compact Riemann surfaces, \(\omega\) the relative dualizing sheaf of \(\pi\), \(\lambda_ n\) the determinant line bundle of \(\omega^ n\), then D. Mumford [Enseign. Math., II. Sér. 23, 39–110 (1977; Zbl 0363.14003)] has shown that \(c_ 1(\lambda_ n)=(6n^ 2-6n+1)c_ 1(\lambda_ 1).\)
The authors explain this coincidence by using Kodaira-Spencer deformation theory to produce a homomorphism \(d\to \text{Vect}(\widehat M_ g)\), the vector fields on the moduli space of curves of genus \(g\) with a basepoint \(p\) and a local parameter near \(p\). This implies that the tangent bundle \(T(\hat M_ g)\) is a quotient of the trivial bundle with fiber \(d\). This gives a homomorphism \(H^ 2(d)\to H^ 1(\Omega^ 1_{\hat M_ g})\) and from this one deduces the coincidence of the two formulas.
The authors further deduce an isomorphism \(H^ 2(d)\to H^ 2(M_ g,{\mathbb C})\) for \(g\geq 3\), where \(M_ g\) is the moduli space of curves of genus \(g\). Applications are also given to the cohomology of Teichmüller spaces.
Reviewer: A.N.Pressley

MSC:

17B66 Lie algebras of vector fields and related (super) algebras
58B25 Group structures and generalizations on infinite-dimensional manifolds
32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
17B56 Cohomology of Lie (super)algebras
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alvarez-Gaumé, L., Gomez, C., Reina, C.: Loop groups, Grassmannians and string theory. Phys. Lett.190, 55-62 (1987)
[2] Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of algebraic curves, Vol. I. Berlin, Heidelberg, New York: Springer 1985, Vol. II (to appear) · Zbl 0559.14017
[3] Arbarello, E., Cornalba, M.: The Picard groups of the moduli spaces of curves. Topology26 (2), 153-171 (1987) · Zbl 0625.14014 · doi:10.1016/0040-9383(87)90056-5
[4] Beilinson, A.A., Manin, Yu.I.: The Mumford form and the Polyakov measure in string theory. Commun. Math. Phys.107, 359-376 (1986) · Zbl 0604.14016 · doi:10.1007/BF01220994
[5] Beilinson, A.A., Manin, Yu.I., Schechtman, V.V.: Sheaves of the Virasoro and Neveu-Schwarz algebras. Moscow University preprint, 1987
[6] Beilinson, A.A., Schechtman, V.V.: Determinant bundles and Virasoro algebras (preprint)
[7] Colombeau, J.-F.: Differential calculus and holomorphy. Amsterdam: North-Holland 1982
[8] Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations. In: Nonlinear integrable systems classical theory and quantum theory. Singapore: World Scientific 1983, pp. 39-119 · Zbl 0571.35098
[9] Harer, J.: The second homology group of the mapping class group of an orientable surface. Invent. Math.72, 221-239 (1983) · Zbl 0533.57003 · doi:10.1007/BF01389321
[10] Kac, V.G., Peterson, D.H.: Spin and wedge representations of infinite dimensional Lie algebras and groups. Proc. Natl. Acad. Sci. USA78, 3308-3312 (1981) · Zbl 0469.22016 · doi:10.1073/pnas.78.6.3308
[11] Kac, V.G.: Highest weight representations of conformal current algebras. In: Geometrical methods in field theory. Singapore: World Scientific 1986, pp. 3-15
[12] Kawamoto, N., Namikawa, Y., Tsuchiya, A., Yamada, Y.: Geometric realization of conformal field theory on Riemann surfaces. Commun. Math. Phys. (in press) · Zbl 0648.35080
[13] Knudsen, F., Mumford, D.: The projectivity of the moduli space of stable curves. I. Math. Scand.39, 19-55 (1976) · Zbl 0343.14008
[14] Kontzevich, M.L.: Virasoro algebra and Teichmüller spaces. Funct. Anal. Appl.21, No. 2, 78-79 (1987)
[15] Manin, Yu.I.: Quantum string theory and algebraic curves. Berkeley I.C.M. talk, 1986
[16] Mumford, D.: Stability of projective varieties. Enseign. Math.23, 39-110 (1977) · Zbl 0363.14003
[17] Mumford, D.: Towards an enumerative geometry of the moduli space of curves. In: Progress in Math., Vol. 36. Boston: Birkhäuser 1983 · Zbl 0554.14008
[18] Pressley, A., Segal, G.: Loop groups. Oxford: Oxford University Press 1986 · Zbl 0618.22011
[19] Ruckle, W.H.: Sequence spaces. London: Pitnam 1981 · Zbl 0491.46007
[20] Segal, G., Wilson, G.: Loop groups and equations of KdV type. Publ. Math. I.H.E.S.61, 3-64 (1985) · Zbl 0592.35112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.