×

Spectra of manifolds less a small domain. (English) Zbl 0645.58042

Let M be a compact connected \(C^{\infty}\) Riemannian manifold with Laplacian \(\Delta\). Then \(\Delta\) has pure point spectrum consisting of eigenvalues \(\lambda_ i\), \(i\geq 0\). Suppose M *\(\subset M\) is a compact submanifold, of codimension at least two, with tubular neighborhood \(B_{\epsilon}\) of radius \(\epsilon >0\). The associated Laplacian acts on L \(2(M-B_{\epsilon})\), where Dirichlet boundary conditions are imposed. Let \(\lambda_{i,\epsilon}\), \(i\geq 1\), denote the eigenvalues of \(\Delta_{\epsilon}\). It is well known that \(\lambda_{j,\epsilon}\downarrow \lambda_{j-1}\), as \(\epsilon\downarrow 0\). The authors compute the first correction term \(\beta (\epsilon)=\lambda_{j,\epsilon}-\lambda_{j-1}\), in terms of the eigenfunction \(\phi_{j-1}\) associated to \(\lambda_{j-1}\).
Reviewer: H.Donelly

MSC:

58J50 Spectral problems; spectral geometry; scattering theory on manifolds
53C20 Global Riemannian geometry, including pinching
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] P. Bérard and S. Gallot, Remarques sur quelques estimées géométriques explicites , C. R. Acad. Sci. Paris Sér. I Math. 297 (1983), no. 3, 185-188. · Zbl 0535.53036
[2] G. Besson, Comportement asymptotique des valeurs propres du laplacien dans un domaine avec un trou , Bull. Soc. Math. France 113 (1985), no. 2, 211-230. · Zbl 0577.58033
[3] I. Chavel, Eigenvalues in Riemannian geometry , Pure and Applied Mathematics, vol. 115, Academic Press Inc., Orlando, FL, 1984. · Zbl 0551.53001
[4] I. Chavel and E. A. Feldman, Spectra of domains in compact manifolds , J. Funct. Anal. 30 (1978), no. 2, 198-222. · Zbl 0392.58016 · doi:10.1016/0022-1236(78)90070-8
[5] I. Chavel and E. A. Feldman, The Lenz shift and Wiener sausage in Riemannian manifolds , Compositio Math. 60 (1986), no. 1, 65-84. · Zbl 0607.60066
[6] I. Chavel and E. A. Feldman, The Lenz shift and Wiener sausage in insulated domains , From local times to global geometry, control and physics (Coventry, 1984/85) ed. D. Elwarthy, Pitman Res. Notes Math. Ser., vol. 150, Longman Sci. Tech., Harlow, 1986, pp. 47-67. · Zbl 0616.60076
[7] G. Courtois, Comportement du spectre d’une variété riemannienne compacte sous perturbation topologique par excision d’une domaine , dissertation, Inst. Fourier, Grenoble, 1987.
[8] G. Del Grosso and F. Marchetti, Asymptotic estimates for the principal eigenvalue of the Laplacian in a geodesic ball , Appl. Math. Optim. 10 (1983), no. 1, 37-50. · Zbl 0546.35049 · doi:10.1007/BF01448378
[9] M. Kac, Probabilistic methods in some problems of scattering theory , Rocky Mountain J. Math. 4 (1974), 511-537. · Zbl 0314.47006 · doi:10.1216/RMJ-1974-4-3-511
[10] H. M. MacDonald, Zeroes of the spherical harmonic \(P^^m_n(\mu)\) considered as a function of \(n\) , Proc. London Math. Soc. (1) 31 (1899), 264-278. · JFM 30.0412.01
[11] T. Matsuzawa and S. Tanno, Estimates of the first eigenvalue of a big cup domain of a \(2\)-sphere , Compositio Math. 47 (1982), no. 1, 95-100. · Zbl 0498.53033
[12] V. G. Maz’ya, S. A. Nazarov, and B. A. Plamenevskii, Asymptotic expansions of the eigenvalues of boundary value problems for the Laplace operator in domains with small holes , Math. USSR-Izv. 24 (1985), 321-345, (Engl. trans). · Zbl 0566.35031 · doi:10.1070/IM1985v024n02ABEH001237
[13] M Pinsky, The first eigenvalue of a spherical cap , Appl. Math. Optim. 7 (1981), no. 2, 137-139. · Zbl 0456.92002 · doi:10.1007/BF01442111
[14] 1 S. Ozawa, Singular Hadamard’s variation of domains and eigenvalues of the Laplacian , Proc. Japan Acad. Ser. A Math. Sci. 56 (1980), no. 7, 306-310. · Zbl 0483.35063 · doi:10.3792/pjaa.56.306
[15] 2 S. Ozawa, Singular Hadamard’s variation of domains and eigenvalues of the Laplacian. II , Proc. Japan Acad. Ser. A Math. Sci. 57 (1981), no. 5, 242-246. · Zbl 0509.35060 · doi:10.3792/pjaa.57.242
[16] S. Ozawa, Singular variation of domains and eigenvalues of the Laplacian , Duke Math. J. 48 (1981), no. 4, 767-778. · Zbl 0483.35064 · doi:10.1215/S0012-7094-81-04842-0
[17] S. Ozawa, The first eigenvalue of the Laplacian on two-dimensional Riemannian manifolds , Tôhoku Math. J. (2) 34 (1982), no. 1, 7-14. · Zbl 0486.53035 · doi:10.2748/tmj/1178229304
[18] S. Ozawa, Electrostatic capacity and eigenvalues of the Laplacian , J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1983), no. 1, 53-62. · Zbl 0531.35061
[19] S. Ozawa, An asymptotic formula for the eigenvalues of the Laplacian in a three-dimensional domain with a small hole , J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1983), no. 2, 243-257. · Zbl 0541.35060
[20] J. Rauch and M. Taylor, Potential and scattering theory on wildly perturbed domains , J. Funct. Anal. 18 (1975), 27-59. · Zbl 0293.35056 · doi:10.1016/0022-1236(75)90028-2
[21] S. Sato, Barta’s inequalities and the first eigenvalue of a cap domain of a \(2\)-sphere , Math. Z. 181 (1982), no. 3, 313-318. · Zbl 0498.53034 · doi:10.1007/BF01161979
[22] B. Simon, Functional integration and quantum physics , Pure and Applied Mathematics, vol. 86, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1979. · Zbl 0434.28013
[23] C. A. Swanson, Asymptotic variational formulae for eigenvalues , Canad. Math. Bull. 6 (1963), 15-25. · Zbl 0111.29803 · doi:10.4153/CMB-1963-004-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.