×

A new Bernoulli matrix method for solving high-order linear and nonlinear Fredholm integro-differential equations with piecewise intervals. (English) Zbl 1302.65274

Summary: This article develops an efficient direct solver for solving numerically the high-order linear Fredholm integro-differential equations (FIDEs) with piecewise intervals under initial-boundary conditions. A Bernoulli matrix approach is implemented for solving linear and nonlinear FIDEs with piecewise intervals under initial boundary conditions. The main characteristic behind this approach is that it reduces such problem to those of solving a system of algebraic equations. A small number of Bernoulli polynomials is needed to obtain a satisfactory result. Numerical results with comparisons are given to confirm the reliability of the proposed method for solving FIDEs with piecewise intervals.

MSC:

65R20 Numerical methods for integral equations
45J05 Integro-ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1972), National Bureau of Standards: National Bureau of Standards Wiley, New York · Zbl 0543.33001
[2] Akyuz-Dascioglu, A., A Chebyshev polynomial approach for linear Fredholm-Volterra integro-differential equations in the most general form, Appl. Math. Comput., 181, 103-112 (2006) · Zbl 1148.65318
[3] Akyuz-Dascioglu, A.; Sezer, M., Chebyshev polynomial solutions of systems of high-order linear differential equations with variable coefficients, Int. J. Comput. Math., 82, 755-764 (2005)
[4] Asady, B.; Tavassoli Kajani, M.; Vencheh, A. H.; Heydari, A., Solving second kind integral equations with hybrid of fourier and block-pulse sunctions, Appl. Math. Comput., 160, 517-522 (2005) · Zbl 1063.65144
[5] Babolian, E.; Shahsavaran, A., Numerical solution of nonlinear Fredholm integral equations of the second kind using Haar wavelets, J. Comput. Appl. Math., 225, 87-95 (2009) · Zbl 1159.65102
[6] Bhrawy, A. H.; Al-Shomrani, M. M., A shifted Legendre spectral method for fractional-order multi-point boundary value problems, Adv. Differ. Equ., 2012, 8 (2012) · Zbl 1280.65074
[7] Bhrawy, A. H.; El-Soubhy, S. I., Jacobi spectral Galerkin method for the integrated forms of second-order differential equations, Appl. Math. Comput., 217, 2684-2697 (2010) · Zbl 1204.65132
[8] Bulbul, B.; Sezer, M., Taylor polynomial solution of hyperbolic type partial differential equations with constant coefficients, Int. J. Comput. Math., 88, 533-544 (2011) · Zbl 1211.65131
[9] Bulbul, B.; Sezer, M., A Taylor matrix method for the solution of a two-dimensional linear hyperbolic equation, Appl. Math. Lett., 24, 1716-1720 (2011) · Zbl 1221.35019
[10] Costabile, F. A.; Dell’ Accio, F., Expansions over a rectangle of real functions in Bernoulli polynomials and applications, BIT Numer. Math., 41, 451-464 (2001) · Zbl 0989.65014
[11] Danfu, H.; Xufeng, S., Numerical solution of integro-differential equations by using CAS wavelet operational matrix of integration, Appl. Math. Comput., 194, 460-466 (2007) · Zbl 1193.65216
[12] Darania, P.; Ebadian, A., A method for the numerical solution of the integro-differential equations, Appl. Math. Comput., 188, 657-668 (2007) · Zbl 1121.65127
[13] Delves, L. M.; Mohamed, J. L., Computational Methods for Integral Equations (1985), Cambridge University Press: Cambridge University Press London · Zbl 0592.65093
[14] Doha, E. H.; Bhrawy, A. H., Efficient spectral-Galerkin algorithms for direct solution of the integrated forms of second-order equations using ultraspherical polynomials, ANZIAM J., 48, 361-386 (2007) · Zbl 1138.65104
[15] Doha, E. H.; Bhrawy, A. H., Efficient spectral-Galerkin algorithms for direct solution of fourth-order differential equations using Jacobi polynomials, Appl. Numer. Math., 58, 1224-1244 (2008) · Zbl 1152.65112
[16] Doha, E. H.; Bhrawy, A. H.; Hafez, R. M., A Jacobi dual-Petrov Galerkin method for third-and fifth-order differential equations, Math. Comput. Model., 53, 1820-1832 (2011) · Zbl 1219.65077
[17] Doha, E. H.; Abd-Elhameed, W. M.; Youssri, Y. H., Efficient spectral-Petrov-Galerkin methods for the integrated forms of third-and fifth-order elliptic differential equations using general parameters generalized Jacobi polynomials, Appl. Math. Comput., 218, 7727-7740 (2012) · Zbl 1242.65148
[18] El-Sayed, S. M.; Abdel-Aziz, M. R., A comparison of Adomian’s decomposition method and Wavelet-Galerkin method for solving integro-differential equations, Appl. Math. Comput., 136, 151-159 (2003) · Zbl 1023.65149
[19] Farnoosh, R.; Ebrahimi, M., Monte Carlo method for solving Fredholm integral equations, Appl. Math. Comput., 195, 309-315 (2008) · Zbl 1131.65109
[20] Gulsu, M.; Gurbuz, B.; Ozturk, Y.; Sezer, M., Laguerre polynomial approach for solving linear delay difference equations, Appl. Math. Comput., 217, 6765-6776 (2011) · Zbl 1211.65166
[21] Gulsu, M.; Sezer, M., Taylor collocation for the solution of systems of high-order linear Fredholm-Volterra integro-differential equations, Int. J. Comput. Math., 83, 429-448 (2006) · Zbl 1109.65113
[22] Isik, O. R.; Sezer, M.; Guney, Z., Bernstein series solution of a class of of linear integro-differential equations with weakly singular kernel, Appl. Math. Comput., 217, 7009-7020 (2011) · Zbl 1213.65153
[23] Jackiewicz, Z.; Rahman, M.; Welfert, B. D., Numerical solution of a Fredholm integro-differential equation modelling neural networks, Appl. Numer. Math., 56, 423-432 (2006) · Zbl 1089.65136
[24] Kreyszig, E., Introductory Functional Analysis with Applications (1978), John Wiley and Sons Press: John Wiley and Sons Press New York · Zbl 0368.46014
[25] Kress, R., Linear Integral Equations (1989), Springer-Verlag: Springer-Verlag Berlin
[26] Jangveladze, T.; Kiguradze, Z.; Neta, B., Large time behavior of solutions and finite difference scheme to a nonlinear integro-differential equation, Comput. Math. Appl., 57, 799-811 (2009) · Zbl 1186.45013
[27] Jangveladze, T.; Kiguradze, Z.; Neta, B., Large time behavior of solutions to a nonlinear integro-differential system, J. Math. Anal. Appl., 351, 382-391 (2009) · Zbl 1172.35330
[28] Jangveladze, T.; Kiguradze, Z.; Neta, B., Finite difference approximation of a nonlinear integro-differential system, Appl. Math. Comput., 215, 615-628 (2009) · Zbl 1179.65162
[29] Jangveladze, T.; Kiguradze, Z.; Neta, B., Large time asymptotic and numerical solution of a nonlinear diffusion model with memory, Comput. Math. Appl., 59, 254-273 (2010) · Zbl 1189.65195
[30] Jangveladze, T.; Kiguradze, Z.; Neta, B., Galerkin finite element method for one nonlinear integro-differential model, Appl. Math. Comput., 217, 6883-6892 (2011) · Zbl 1216.65183
[31] Lehmer, D. H., A new approach to Bernoulli polynomials, Amer. Math. Month., 95, 905-911 (1988) · Zbl 0663.10009
[32] Maleknejad, K.; Mirzaee, F., Numerical solution of integro-differential equations by using rationalized Haar functions method, Int. J. Syst. Math., 35, 1735-1744 (2006) · Zbl 1160.45303
[33] Maleknejad, K.; Arzhang, A., Numerical solution of the Fredholm singular integro-differential equation with Cauchy kernel by using Taylor-series expansion and Galerkin method, Appl. Math. Comput., 182, 888-897 (2006) · Zbl 1107.65118
[34] Maleknejad, K.; Basirat, B.; Hashemizadeh, E., A Bernstein operational matrix approach for solving a system of high order linear Volterra-Fredholm integro-differential equations, Math. Comput. Model., 55, 1363-1372 (2012) · Zbl 1255.65245
[35] Maleknejad, K.; Hashemizadeh, E.; Basirat, B., Computational method based on Bernstein operational matrices for nonlinear Volterra-Fredholm-Hammerstein integral equations, Commun. Nonlinear Sci. Numer. Simul., 17, 52-61 (2012) · Zbl 1244.65243
[36] Maleknejad, K.; Nedaiasl, K., Application of Sinc-collocation method for solving a class of nonlinear Fredholm integral equations, Comput. Math. Appl., 62, 3292-3303 (2011) · Zbl 1232.65184
[37] Maleknejad, K.; Tavassoli Kajani, M., Solving linear integro-differential equation system by Galerkin methods with hybrid functions, Appl. Math. Comput., 159, 603-612 (2004) · Zbl 1063.65145
[38] Mashayekhi, S.; Ordokhani, Y.; Razzaghi, M., Hybrid functions approach for nonlinear constrained optimal control problems, Commun. Nonlinear. Sci. Numer. Simulat., 17, 1831-1843 (2012) · Zbl 1239.49043
[39] Natalini, P.; Bernaridini, A., A generalization of the Bernoulli polynomials, J. Appl. Math., 3, 155-163 (2003) · Zbl 1019.33011
[40] Neta, B., Numerical solution of a nonlinear integro-differential equation, J. Math. Anal. Appl., 89, 598-611 (1982) · Zbl 0488.65074
[41] Neta, B.; Igwe, J. O., Finite differences versus finite elements for solving nonlinear integro-differential equations, J. Math. Anal. Appl., 112, 607-618 (1985) · Zbl 0625.65145
[42] Ordokhani, Y., An application of Walsh functions for Fredholm-Hammerstein integro-differential equations, Int. J. Contemp. Math. Sci., 5, 1055-1063 (2010) · Zbl 1207.65164
[43] Pour-Mahmoud, J.; Ardabili, M. Y.R.; Shahmorad, S., Numerical solution of the system of integro-differential equations by the Tau method, Appl. Math. Comput., 168, 465-478 (2005) · Zbl 1082.65600
[44] Rashidinia, J.; Zarebnia, M., The numerical solution of integro-differential equation by means of the Sinc method, Appl. Math. Comput., 188, 1124-1130 (2007) · Zbl 1118.65131
[45] Reihani, M. H.; Abadi, Z., Rationalized Haar functions method for solving Fredholm and Volterra integral equations, J. Comput. Appl. Math., 200, 12-20 (2007) · Zbl 1107.65122
[46] Shahmorad, S., Numerical solution of the general form linear Fredholm Volterra integro-differential equations by the Tau method with an error estimation, Appl. Math. Comput., 167, 1418-1429 (2005) · Zbl 1082.65602
[47] Yalcinbas, S.; Aynigul, M.; Sezer, M., A collocation method using Hermite polynomials for approximate solution of pantograph equations, J. Franklin Institute, 384, 1128-1139 (2011) · Zbl 1221.65187
[48] Yalcinbas, S.; Sezer, M.; Sorkun, H. H., Legendre polynomial solutions of high-order linear Fredholm integro-differential equations, Appl. Math. Comput., 210, 334-349 (2009) · Zbl 1162.65420
[49] Yuzbasi, S.; Shahin, N.; Sezer, M., Numerical solutions of systems of linear Fredholm integro-differential equations with Bessel polynomial bases, Comput. Math. Appl., 61, 3079-3096 (2011) · Zbl 1222.65154
[50] Yusufoglu, E., Improved homotopy perturbation method for solving Fredholm type integro-differential equations, Chaos Solitons Fract., 41, 28-37 (2009) · Zbl 1198.65251
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.