×

Global dynamics of a multi-group epidemic model with general relapse distribution and nonlinear incidence rate. (English) Zbl 1279.92083

Summary: In this paper, we investigate a class of multi-group epidemic models allowing heterogeneity of the host population and that has taken into consideration with general relapse distribution and nonlinear incidence rate. We establish that the global dynamics are completely determined by the basic reproduction number \(R_{0}\). The proofs of the main results utilize the persistence theory in dynamical systems, Lyapunov functionals and a subtle grouping technique in estimating the derivatives of Lyapunov functionals guided by graph-theoretical approach. Biologically, the disease (with any initial inoculation) will persist in all groups of the population and will eventually settle at a constant level in each group. Furthermore, our results demonstrate that heterogeneity and nonlinear incidence rate do not alter the dynamical behaviors of the basic SIR model. On the other hand, the global dynamics exclude the existence of Hopf bifurcation leading to sustained oscillatory solutions.

MSC:

92D30 Epidemiology
37N25 Dynamical systems in biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson R., Infectious Diseases of Humans: Dynamics and Control (1991)
[2] Chin J., Control of Communicable Diseases Manual (1999)
[3] DOI: 10.1001/jama.1988.03720070051034 · doi:10.1001/jama.1988.03720070051034
[4] DOI: 10.1038/nm0698-673 · doi:10.1038/nm0698-673
[5] DOI: 10.1007/978-1-4899-2869-6_4 · doi:10.1007/978-1-4899-2869-6_4
[6] DOI: 10.1086/323784 · doi:10.1086/323784
[7] DOI: 10.1016/S0035-9203(00)90306-7 · doi:10.1016/S0035-9203(00)90306-7
[8] DOI: 10.1016/j.mbs.2006.09.017 · Zbl 1114.92047 · doi:10.1016/j.mbs.2006.09.017
[9] E. Beretta and V. Capasso, Mathematical Ecology, eds. T. G. Hallam, L. J. Gross and S. A. Levin (World Scientific, Singapore, 1986) pp. 317–342.
[10] Guo H., Can. Appl. Math. Q. 14 pp 259–
[11] DOI: 10.1090/S0002-9939-08-09341-6 · Zbl 1155.34028 · doi:10.1090/S0002-9939-08-09341-6
[12] DOI: 10.1016/0040-5809(78)90011-4 · Zbl 0392.92009 · doi:10.1016/0040-5809(78)90011-4
[13] DOI: 10.1016/0025-5564(76)90125-5 · Zbl 0344.92016 · doi:10.1016/0025-5564(76)90125-5
[14] DOI: 10.1016/j.jmaa.2009.09.017 · Zbl 1175.92046 · doi:10.1016/j.jmaa.2009.09.017
[15] DOI: 10.1007/978-3-642-93287-8_26 · doi:10.1007/978-3-642-93287-8_26
[16] DOI: 10.1142/S1793524512600017 · Zbl 1280.34059 · doi:10.1142/S1793524512600017
[17] DOI: 10.1016/j.nonrwa.2010.01.012 · Zbl 1206.34065 · doi:10.1016/j.nonrwa.2010.01.012
[18] DOI: 10.1007/s11538-008-9352-z · Zbl 1169.92041 · doi:10.1007/s11538-008-9352-z
[19] DOI: 10.1016/j.mcm.2011.08.045 · Zbl 1255.34042 · doi:10.1016/j.mcm.2011.08.045
[20] DOI: 10.1038/280361a0 · doi:10.1038/280361a0
[21] DOI: 10.1016/j.matcom.2008.02.007 · Zbl 1151.92030 · doi:10.1016/j.matcom.2008.02.007
[22] DOI: 10.1016/j.jde.2009.09.003 · Zbl 1190.34063 · doi:10.1016/j.jde.2009.09.003
[23] Miller R. K., Nonlinear Volterra Integral Equations (1971) · Zbl 0448.45004
[24] Atkinson F. V., Funkcial. Ekvac. 31 pp 331–
[25] Diekmann O., J. Math. Biol. 28 pp 365–
[26] DOI: 10.1137/0524026 · Zbl 0774.34030 · doi:10.1137/0524026
[27] Watmough J., Math. Biosci. 180 pp 29–
[28] DOI: 10.1007/978-1-4612-4342-7 · doi:10.1007/978-1-4612-4342-7
[29] Hino Y., Lecture Notes in Mathematics 1473, in: Functional-Differential Equations with Infinite Delay (1991) · Zbl 0732.34051 · doi:10.1007/BFb0084432
[30] R. A. Horn and C. R. Johnson, Martrix Analysis (Post and Telecom Press, 2005) pp. 353–370.
[31] DOI: 10.1137/1.9781611970432 · doi:10.1137/1.9781611970432
[32] Zhao X. Q., Can. Appl. Math. Q. 3 pp 473–
[33] DOI: 10.3934/mbe.2009.6.603 · Zbl 1190.34108 · doi:10.3934/mbe.2009.6.603
[34] DOI: 10.1007/BFb0080630 · Zbl 0155.42201 · doi:10.1007/BFb0080630
[35] DOI: 10.1007/978-3-642-93107-9 · doi:10.1007/978-3-642-93107-9
[36] Smith H. L., Mathematical Surveys and Monographs 41 (1995)
[37] DOI: 10.1016/j.nonrwa.2009.12.008 · Zbl 1208.34134 · doi:10.1016/j.nonrwa.2009.12.008
[38] DOI: 10.1016/j.vaccine.2006.05.018 · doi:10.1016/j.vaccine.2006.05.018
[39] DOI: 10.1007/BF00277162 · Zbl 0621.92014 · doi:10.1007/BF00277162
[40] DOI: 10.1007/BF00276956 · Zbl 0582.92023 · doi:10.1007/BF00276956
[41] Korobeinikov A., Math. Biosci. Eng. 1 pp 57–
[42] DOI: 10.1007/s11538-007-9196-y · Zbl 1298.92101 · doi:10.1007/s11538-007-9196-y
[43] DOI: 10.1016/j.nonrwa.2008.10.014 · Zbl 1185.37209 · doi:10.1016/j.nonrwa.2008.10.014
[44] Berman A., Nonnegative Matrices in the Mathematical Sciences (1979) · Zbl 0484.15016
[45] Moon J. W., Canadian Mathematical Congress, in: Counting Labelled Trees (1970)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.