×

The convergence of Nyström methods for Wiener-Hopf equations. (English) Zbl 0621.65138

We consider second kind integral equations on the half-line; where the integral operator is a compact perturbation of a convolution operator. It is shown that these may be solved numerically by Nyström methods based on composite quadrature rules. Provided the underlying mesh is graded to correctly match the behaviour of the solution, we prove the same rates of convergence that occur when the methods are applied to equations on finite intervals. Numerical examples are given.

MSC:

65R20 Numerical methods for integral equations
45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type)
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Atkinson, K.E.: A survey of numerical methods for the solution of Fredholm integral equations of the second kind. Philadelphia: SIAM 1976 · Zbl 0353.65069
[2] Atkinson, K.E.: The numerical solution of integral equations on the half-line. SIAM J. Numer. Anal.6, 375-397 (1969) · Zbl 0184.20105 · doi:10.1137/0706035
[3] Anselone, P.M.: Collectively compact operator approximation theory. Englewood Cliffs: Prentice-Hall 1971 · Zbl 0228.47001
[4] Anselone, P.M., Sloan, I.H.: Integral equations on the half line. J. Integral Equations [Suppl.]9, 3-23 (1985) · Zbl 0575.65137
[5] Baker, C.T.H.: The numerical treatment of integral equations. Oxford: The Clarendon Press 1977 · Zbl 0373.65060
[6] Chandler, G.A., Graham, I.G.: Product integration-collocation methods for non-compact integral operator equations. Math. Comput. (to appear) · Zbl 0639.65074
[7] Finn, G.D., Jefferies, J.T.: Studies in spectral line formation. I. Formulation and simple applications. J. Quant. Spectrosc. Radiat. Transfer8, 1675-1703 (1968) · doi:10.1016/0022-4073(68)90109-X
[8] Graham, I.G., Chandler, G.A.: High order methods for linear functionals of solutions of second kind integral equations. SIAM J. Numer. Anal. (to appear) · Zbl 0661.65137
[9] Hopf, E.: Mathematical problems of radiative equilibrium. London: Cambridge University Press 1934 · Zbl 0009.33004
[10] Kagiwada, H.H., Kalaba, R.: Integral equations via imbedding methods. Reading: Addison-Wesley 1974 · Zbl 0331.45001
[11] Noble, B.: Methods based on the Wiener-Hopf technique for the solution of partial differential equations. London: Pergamon 1958 · Zbl 0082.32101
[12] Paley, R.E.A.C., Wiener, N.: Fourier transforms in the complex domain. Providence: American Mathematical Society 1934 · Zbl 0011.01601
[13] Sloan, I.H., Spence, A.: Projection methods for integral equations on the half-line. I.M.A. J. Numer. Anal.6, 153-172 (1986) · Zbl 0593.65095
[14] Sloan, I.H., Spence, A.: Wiener-Hopf integral equations: finite section approximation and projection methods. Constructive Methods for the Practical Treatment of Integral Equations. Hämmerlin, G., Hoffmann, K.-H. (eds.), Internat. Ser. Numer. Maths.; Basel: Birkhäuser 1985 · Zbl 0561.65094
[15] Stallybrass, M.P.: A pressurised crack in the form of a cross. Q. J. Mech., Appl. Math.23, 35-48 (1970) · Zbl 0194.26701 · doi:10.1093/qjmam/23.1.35
[16] Stallybrass, M.P.: A crack perpendicular to an elastic half-plane. Int. J. Eng. Sci.8, 351-362 (1970) · Zbl 0197.21603 · doi:10.1016/0020-7225(70)90073-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.