×

Controller design for a second-order plant with uncertain parameters and disturbance: application to a DC motor. (English) Zbl 1271.93144

Summary: This paper shows the controller design for a second-order plant with unknown varying behavior in the parameters and in the disturbance. The state adaptive backstepping technique is used as control framework, but important modifications are introduced. The controller design achieves mainly the following two benefits: upper or lower bounds of the time-varying parameters of the model are not required, and the formulation of the control and update laws and stability analysis are simpler than closely related works that use the Nussbaum’s gain method. The controller has been developed and tested for a DC motor speed control and it has been implemented in a rapid control prototyping system based on Digital Signal Processing for dSPACE platform. The motor speed converges to a predefined desired output signal.

MSC:

93E03 Stochastic systems in control theory (general)
93B51 Design techniques (robust design, computer-aided design, etc.)
93C95 Application models in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Li, Z.; Chen, J.; Zhang, G.; Gan, M. G., Adaptive robust control for DC motors with input saturation, IET Control Theory & Applications, 5, 16, 1895-1905 (2011) · doi:10.1049/iet-cta.2010.0415
[2] Linares-Flores, J.; Reger, J.; Sira-Ramirez, H., Load torque estimation and passivity-based control of a boost-converter/DC-motor combination, IEEE Transactions on Control Systems Technology, 18, 6, 1398-1405 (2010) · doi:10.1109/TCST.2009.2037809
[3] Khanesar, M. A.; Kaynak, O.; Teshnehlab, M., Direct model reference Takagi-Sugeno fuzzy control of SISO nonlinear systems, IEEE Transactions on Fuzzy Systems, 19, 5, 914-924 (2011) · doi:10.1109/TFUZZ.2011.2150757
[4] Kanellakopoulos, I.; Kokotović, P. V.; Morse, A. S., Systematic design of adaptive controllers for feedback linearizable systems, IEEE Transactions on Automatic Control, 36, 11, 1241-1253 (1991) · Zbl 0768.93044 · doi:10.1109/9.100933
[5] Hong, Y.; Yao, B., A globally stable saturated desired compensation adaptive robust control for linear motor systems with comparative experiments, Automatica, 43, 10, 1840-1848 (2007) · Zbl 1119.93028 · doi:10.1016/j.automatica.2007.03.021
[6] Tong, S.; Li, Y., Fuzzy adaptive robust backstepping stabilization for SISO nonlinear systems with unknown virtual control direction, Information Sciences, 180, 23, 4619-4640 (2010) · Zbl 1205.93136 · doi:10.1016/j.ins.2010.07.025
[7] Lin, F. J.; Shieh, P. H.; Chou, P. H., Robust adaptive backstepping motion control of linear ultrasonic motors using fuzzy neural network, IEEE Transactions on Fuzzy Systems, 16, 3, 676-692 (2008) · doi:10.1109/TFUZZ.2007.903333
[8] Lin, F. J.; Teng, L. T.; Chen, C. Y.; Hung, Y. C., FPGA-based adaptive backstepping control system using RBFN for linear induction motor drive, IET Electric Power Applications, 2, 6, 325-340 (2008) · doi:10.1049/iet-epa:20070178
[9] El Magri, A.; Giri, F.; Abouloifa, A.; Chaoui, F. Z., Robust control of synchronous motor through AC/DC/AC converters, Control Engineering Practice, 18, 5, 540-553 (2010) · doi:10.1016/j.conengprac.2010.02.005
[10] Zhou, J.; Wen, C.; Zhang, Y., Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis, IEEE Transactions on Automatic Control, 49, 10, 1751-1757 (2004) · Zbl 1365.93251 · doi:10.1109/TAC.2004.835398
[11] Zhou, J.; Wen, C.; Zhang, Y., Adaptive backstepping control of a class of uncertain nonlinear systems with unknown dead-zone, Proceedings of the IEEE Conference on Robotics, Automation and Mechatronics
[12] Zhou, J.; Wen, C.; Wang, W., Adaptive backstepping control of uncertain systems with unknown input time-delay, Automatica, 45, 6, 1415-1422 (2009) · Zbl 1166.93339 · doi:10.1016/j.automatica.2009.01.012
[13] Wen, C.; Zhou, J.; Wang, W., Decentralized adaptive backstepping stabilization of interconnected systems with dynamic input and output interactions, Automatica, 45, 1, 55-67 (2009) · Zbl 1154.93426 · doi:10.1016/j.automatica.2008.06.018
[14] Huang, A.-C.; Kuo, Y.-S., Sliding control of non-linear systems containing time-varying uncertainties with unknown bounds, International Journal of Control, 74, 3, 252-264 (2001) · Zbl 1010.93020 · doi:10.1080/00207170010003441
[15] Zhang, Y.; Peng, P. Y.; Jiang, Z. P., Stable neural controller design for unknown nonlinear systems using backstepping, IEEE Transactions on Neural Networks, 11, 6, 1347-1360 (2000)
[16] Bechlioulis, C. P.; Rovithakis, G. A., Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems, Automatica, 45, 2, 532-538 (2009) · Zbl 1158.93325 · doi:10.1016/j.automatica.2008.08.012
[17] Li, Y.; Qiang, S.; Zhuang, X.; Kaynak, O., Robust and adaptive backstepping control for nonlinear systems using RBF neural networks, IEEE Transactions on Neural Networks, 15, 3, 693-701 (2004) · doi:10.1109/TNN.2004.826215
[18] Na, J.; Ren, X.; Herrmann, G.; Qiao, Z., Adaptive neural dynamic surface control for servo systems with unknown dead-zone, Control Engineering Practice, 19, 11, 1328-1343 (2011) · doi:10.1016/j.conengprac.2011.07.005
[19] Wang, D.; Huang, J., Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form, IEEE Transactions on Neural Networks, 16, 1, 195-202 (2005) · doi:10.1109/TNN.2004.839354
[20] Su, C.-Y.; Feng, Y.; Hong, H.; Chen, X., Adaptive control of system involving complex hysteretic nonlinearities: a generalised Prandtl-Ishlinskii modelling approach, International Journal of Control, 82, 10, 1786-1793 (2009) · Zbl 1178.93080 · doi:10.1080/00207170902736307
[21] Feng, Y.; Hong, H.; Chen, X.; Su, C. Y., Robust adaptive controller design for a class of nonlinear systems preceded by generalized Prandtl-Ishlinskii hysteresis representation, Proceedings of the 7th World Congress on Intelligent Control and Automation (WCICA ’08) · doi:10.1109/WCICA.2008.4592955
[22] Feng, Y.; Su, C. Y.; Hong, H., Universal construction of robust adaptive control laws for a class of nonlinear systems preceded by generalized Prandtl-Ishlinskii representation, Proceedings of the 3rd IEEE Conference on Industrial Electronics and Applications (ICIEA ’08) · doi:10.1109/ICIEA.2008.4582497
[23] Feng, Y.; Hu, Y. M.; Su, C. Y., Robust adaptive control for a class of perturbed strict-feedback nonlinear systems with unknown Prandtl-Ishlinskii hysteresis, Proceedings of the IEEE International Symposium on Intelligent Control (ISIC ’06) · Zbl 1148.93019 · doi:10.1109/CACSD-CCA-ISIC.2006.4776632
[24] Du, H.; Ge, S. S.; Liu, J. K., Adaptive neural network output feedback control for a class of non-affine non-linear systems with unmodelled dynamics, IET Control Theory and Applications, 5, 3, 465-477 (2011) · doi:10.1049/iet-cta.2010.0055
[25] Ge, S. S.; Wang, J., Robust adaptive tracking for time-varying uncertain nonlinear systems with unknown control coefficients, IEEE Transactions on Automatic Control, 48, 8, 1463-1469 (2003) · Zbl 1364.93704 · doi:10.1109/TAC.2003.815049
[26] Xudong, Y.; Jingping, J., Adaptive nonlinear design without a priori knowledge of control directions, IEEE Transactions on Automatic Control, 43, 11, 1617-1621 (1998) · Zbl 0957.93048
[27] Ge, S. S.; Wang, J., Robust adaptive neural control for a class of perturbed strict feedback nonlinear systems, IEEE Transactions on Neural Networks, 13, 6, 1409-1419 (2002) · doi:10.1109/TNN.2002.804306
[28] Nussbaum, R. D., Some remarks on a conjecture in parameter adaptive control, Systems and Control Letters, 3, 5, 243-246 (1983) · Zbl 0524.93037
[29] Astrom, K.; Wittenmark, B., Adaptive Control (1995), Addison-Wesly · Zbl 1163.93350
[30] Tong, S.; Liu, C.; Li, Y., Fuzzy-adaptive decentralized output-feedback control for large-scale nonlinear systems with dynamical uncertainties, IEEE Transactions on Fuzzy Systems, 18, 5, 845-861 (2010) · doi:10.1109/TFUZZ.2010.2050326
[31] Psillakis, H. E., Further results on the use of nussbaum gains in adaptive neural network control, IEEE Transactions on Automatic Control, 55, 12, 2841-2846 (2010) · Zbl 1368.93313 · doi:10.1109/TAC.2010.2078070
[32] Rincon, A.; Angulo, F.; Osorio, G., A robust state feedback adaptive controller with improved transient tracking error bounds for plants with unknown varying control gain, Applications of Nonlinear Control, 79-98 (2012), INTECH
[33] Polycarpou, M. M.; Ioannou, P. A., On the existence and uniqueness of solutions in adaptive control systems, IEEE Transactions on Automatic Control, 38, 3, 474-479 (1993) · Zbl 0789.93084 · doi:10.1109/9.210149
[34] Slotine, J.; Li, W., Applied Nonlinear Control (1991), Englewood Cliffs, NJ, USA: Prentice Hall, Englewood Cliffs, NJ, USA · Zbl 0753.93036
[35] Leva, A.; Piroddi, L.; Di Felice, M.; Boer, A.; Paganini, R., Adaptive relay-based control of household freezers with on-off actuators, Control Engineering Practice, 18, 1, 94-102 (2010) · doi:10.1016/j.conengprac.2009.09.008
[36] Felice, M. D.; Piroddi, L.; Leva, A.; Boer, A., Adaptive temperature control of a household refrigerator, Proceedings of the American Control Conference (ACC ’09) · doi:10.1109/ACC.2009.5159862
[37] Royden, H., Real Analysis (1988), Upper Saddle River, NJ, USA: Prentice Hall, Upper Saddle River, NJ, USA · Zbl 0704.26006
[38] Ioannou, P.; Sun, J., Robust Adaptive Control (1996), Upper Saddle River, NJ, USA: Prentice Hall, Upper Saddle River, NJ, USA · Zbl 0839.93002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.