×

Toeplitz matrix techniques and convergence of complex weight Padé approximants. (English) Zbl 0619.41014

One considers diagonal Padé approximants about \(\infty\) of functions of the form \(f(z)=\int^{1}_{-1}(z-x)^{-1}w(x)dx,\) \(z\not\in [-1,1]\), where w is an integrable, possibly complex-valued, function defined on [- 1,1]. Convergence of the sequence of diagonal Padé approximants towards f is established under the condition that there exists a weight \(\omega\), positive almost everywhere on [-1,1], such that \(g(x)=w(x)/\omega (x)\) is continuous and not vanishing on [-1,1]. The rate of decrease of the error is also described. The proof proceeds by establishing the link between the Padé denominators and the orthogonal polynomials related to \(\omega\), in terms of the Toeplitz matrix of symbol g(cos \(\theta)\).

MSC:

41A29 Approximation with constraints
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ambarcumjan, G. V., On a reduction method for a class of Toeplitz matrices (Russian), Mat. Issled., 8, 161-169 (1973)
[2] Baker, G. A.; Graves-Morris, P., Padé Approximants I (1981), Addison Wesley: Addison Wesley Reading, MA · Zbl 0603.30044
[3] Bourgain, J., A problem of Douglas and Rudin on factorization, Pac. J. Math., 121, 47-50 (1986) · Zbl 0609.30035
[4] Brezinski, C., Padé-Type Approximation and General Orthogonal Polynomials (1980), Birkhäuser: Birkhäuser Basel · Zbl 0418.41012
[5] de Bruin, M. G.; van Rossum, H., Formal Padé approximation, Nieuw Arch. Wiskunde, 23, 3, 115-130 (1975) · Zbl 0311.41011
[6] Douglas, R. G., Banach Algebra Techniques in Operator Theory (1972), Academic Press: Academic Press New York · Zbl 0247.47001
[7] Draux, A., Polynômes Orthogonaux Formels — Applications, 974 (1983), Springer: Springer Berlin, Lecture Notes Math. · Zbl 0504.42001
[8] Economou, E. N., Green’s Functions in Quantum Physics, ((1983), Springer: Springer Berlin)
[9] Gautschi, W., Computational aspects of three-term recurrence relations, SIAM Rev., 9, 24-82 (1967) · Zbl 0168.15004
[10] Gautschi, W., Orthogonal polynomials-Constructive theory and applications, J. Comp. Appl. Math., 12&13, 61-76 (1985) · Zbl 0583.65011
[11] Giannozzi, P.; Grosso, G.; Pastori Parravicini, G., The classical and generalized moment problem in the theory of relaxation, Phys. Stat. Sol. (b), 128, 643-652 (1985)
[12] Gilewicz, J., Approximants de Padé, 667 (1978), Springer: Springer Berlin, Lecture Notes Math. · Zbl 0378.30015
[13] Grenander, U.; Szegö, G., Toeplitz Forms and their Applications (1958), University of California Press: University of California Press Berkeley · Zbl 0080.09501
[14] Grosso, G.; Pastori Parravicini, G., Continued fractions in the theory of relaxation: Memory function methods in solid state physics, (Evans, M. W.; Grigolini, P.; Pastori Parravicini, G., Memory Function Approaches to Stochastic Problems in Condensed Matter, 62 (1985)), Special Volume of Adv. in Chem. Phys. · Zbl 1122.81084
[15] Jacobsen, L.; Waadeland, H., Modification of continued fractions, (Werner, H.; Bünger, H. J., Padé Approximation and its Applications, Bad Honnef, 1983, 1071 (1984), Springer: Springer Berlin), 176-196, Lecture Notes Math.
[16] Kantorovitch, L. V., Functional analysis and applied mathematics, NBS Rep., 1509 (1952), (transl. C.D. Bester), US Dept. Commerce
[17] Kantorovitch, L. V.; Akilov, G. P., Functional Analysis in Normed Spaces (1964), Pergamon Press: Pergamon Press Oxford · Zbl 0127.06104
[18] Karlsson, J., Problem on continued fractions and complex measures, Kong. Norske Vid. Selsk. Skr., 1, 159 (1983)
[19] López Lagomasino, G., Survey on multipoint Padé approximation to Markov type meromorphic functions and asymptotic properties of the orthogonal polynomials generated by them, (Brezinski, C., Polynômes Orthogonaux et Applications; Laguerre Symposium, Bar-Le-Duc 1984, 1171 (1985), Springer: Springer Berlin), 309-316, Lecture Notes Math. · Zbl 0588.41010
[20] Lubinsky, D. S., Padé tables of a class of entire functions, Proc. Amer. Math. Soc., 94, 399-405 (1985) · Zbl 0572.30032
[21] D.S. Lubinsky and E.B. Saff, Convergence of Padé approximants of partial theta functions and the Rogers—Szegö polynomials, Constr. Approx., to appear.; D.S. Lubinsky and E.B. Saff, Convergence of Padé approximants of partial theta functions and the Rogers—Szegö polynomials, Constr. Approx., to appear. · Zbl 0634.41013
[22] Magnus, A., Fractions continues généralisées et matrices infinies, Bull. Soc. Math. Belg., 29, 145-159 (1977), (ser. B) · Zbl 0426.10032
[23] Máté, A.; Nevai, P.; Totik, V., Asymptotics for the ratio of leading coefficients of orthonormal polynomials on the unit circle, Constr. Approx., 1, 63-69 (1985) · Zbl 0582.42012
[24] Máté, A.; Nevai, P.; Totik, V., Extensions of Szegö’s theory of orthogonal polynomials, II and III, Constr. Approx., 3, 73-96 (1987) · Zbl 0635.42024
[25] Meinguet, J., On the Davis—Kahan—Weinberger solution of the norm-preserving dilation problem, Numer. Math., 49, 331-341 (1986) · Zbl 0565.15010
[26] Milne-Thomson, L. M., The Calculus of Finite Differences (1933), Macmillan: Macmillan London · Zbl 0008.01801
[27] Nevai, P., Orthogonal polynomials, Memoirs AMS, 18, 213 (1979) · Zbl 0405.33009
[28] Nevai, P., Extensions of Szegö’s theory of orthogonal polynomials, (Brezinski, C., Polynômes Orthogonaux et Applications; Laguerre Symposium, Bar-Le-Duc, 1984, 1171 (1985), Springer: Springer Berlin), 230-238, Lecture Notes Math.
[29] P. Nevai, Private communication, 2/21/1968.; P. Nevai, Private communication, 2/21/1968.
[30] Nuttall, J.; Singh, S. R., Orthogonal polynomials and Padé approximants associated with a system of arcs, J. Approx. Theory, 21, 1-42 (1977) · Zbl 0355.30004
[31] Nuttall, J.; Wherry, C. J., Gaussian integration for complex weight functions, J. Inst. Math. Appl., 21, 165-170 (1978) · Zbl 0372.65008
[32] Rahmanov, E. A., On the asymptotics of the ratio of orthogonal polynomials, Math. USSR Sb., 46, 105-117 (1983), II · Zbl 0515.30030
[33] Stahl, H., Orthogonal polynomials of complex-valued measures and the convergence of Padé approximants, (Alexits, G.; Turán, P., Fourier Analysis and Approximation Theory, II (1978), North-Holland: North-Holland Amsterdam), 771-788 · Zbl 0417.42015
[34] Stahl, H., Divergence of diagonal Padé approximants and the asymptotic behavior of orthogonal polynomials associated with nonpositive measures, Constr. Approx., 1, 249-270 (1985) · Zbl 0641.41015
[35] Stahl, H., On the divergence of certain Padé approximant and the behaviour of the associated orthogonal polynomials, (Brezinski, C., Polynômes Orthogonaux et Applications; Laguerre Symposium, Bar-Le-Duc, 1984, 1771 (1985), Springer: Springer Berlin), 321-330, Lecture Notes Math.
[36] Stahl, H., Orthogonal polynomials with complex valued weight function I, II, Constr. Approx., 2, 253-261 (1986)
[37] H. Stahl, The convergence of Padé approximants to functions with branch point, preprint.; H. Stahl, The convergence of Padé approximants to functions with branch point, preprint.
[38] Thron, J. W.; Waadeland, H., Survey of modifications of continued fractions, (Jones, W. B.; Thron, W. J.; Waadeland, H., Analytic Theory of Continued Fractions, 932 (1982), Springer: Springer Berlin), 38-66, Lecture Notes Math. · Zbl 0497.30002
[39] Wallin, H., Interpolation by rational functions, (Kurke, H., Recent Trends in Mathematics, Reinhardsbrunn, 1982, 50 (1982), Teubner: Teubner Leipzig), 303-315, Teubner Texte zur Math.
[40] Widom, H., Toeplitz matrices, (Hirschman, I. I., Studies in Real and Complex Analysis (1965), Math. Assoc. Amer), 179-209 · Zbl 0173.42501
[41] Widom, H., Toeplitz matrices and Toeplitz operators, (Complex Analysis and its Applications, 1 (1976), IAEA: IAEA Vienna), 319-341, 41 · Zbl 0347.47017
[42] Goldberg, I. C.; Fel’dman, I. A., Convolution Equations and Projection Methods for Their Solution, 41 (1974), AMS: AMS Providence, RI, Transl. Math. Monographs · Zbl 0278.45008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.