×

L’asymptotique de Weyl pour les bouteilles magnétiques. (The Weyl asymptotic formula for magnetic bottles). (French) Zbl 0612.35102

The Schrödinger operator \(H=(i\vec V-\vec a)^ 2\) with magnetic field and without electric one is considered. Let \(B=(\partial_ ja_ k- \partial_ ka_ j)_{jk}\) be a matrix of the intensity of the magnetic field and let the following conditions be fulfilled: \(\| B(x)\| \leq C\| B(x')\|\) for \(| x-x'| \leq 1\) and \(\| B(x)\| \to \infty\) and \(| D^{\beta}a(x)| =o(\| B(x)\|^{3/2})\) as \(| \beta | =2\) and \(| x| \to \infty\). Then for every \(\epsilon >0\) the eigenvalue counting function N(\(\lambda)\) of H satisfies the following asymptotical estimates: \[ N_{as}(\lambda (1- \epsilon))\lesssim N(\lambda)\lesssim N_{as}(\lambda (1+\epsilon))\quad as\quad \lambda \to +\infty \] where \[ N_{as}(\lambda)=\int_{{\mathbb{R}}^ d}\nu_{B(x)}(\lambda)dx,\quad \nu_ B(\lambda)=c_{d,r}b_ 1...b_ r\sum_{n_ i\geq 0}(\lambda - \sum^{r}_{i=1}(2n_ i+1))_+^{d/2-r} \] \(b_ j>0\) and \(\pm ib_ j\) are all the non-zero eigenvalues of B.
These estimates are proved by the variational method. The two-dimensional case was investigated in the previous papers of the author and three- dimensional one in preprint of H. Tamura (1985). Moreover, the precise remainder estimates in the three-dimensional case in the presence of electric field are obtained by the reviewer (to appear in Proc. Intern. Congress of Mathematicians, Berkeley-1986 and in Soviet Math. Dokl.).
Reviewer: V.Ivrii

MSC:

35P20 Asymptotic distributions of eigenvalues in context of PDEs
58J50 Spectral problems; spectral geometry; scattering theory on manifolds
35J10 Schrödinger operator, Schrödinger equation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Avron, J., Herbst, I., Simon, B.: Duke Math. J.45, 847-883 (1978) · Zbl 0399.35029 · doi:10.1215/S0012-7094-78-04540-4
[2] Courant, R., Hilbert, D.: Methods of mathematical physics. I. pp. 429-431. New York: Wiley 1953 · Zbl 0051.28802
[3] Colin de Verdiere, Y.: Calcul du spectre de certaines nilvariétés compactes de dimension 3. Séminaire Grenoble-Chambéry 83-84 (exposé no 5)
[4] Colin de Verdiere, Y.: Minorations de sommes de valeurs propres et conjecture de Polya. Séminaire Grenoble-Chambéry 84-85 (exposé no 6)
[5] Colin de Verdiere, Y.: L’asymptotique de Weyl pour les bouteilles magnétiques bidimensionnelles. Prépublications de l’Institut Fourier, no 33 (1985)
[6] Colin de Verdiere, Y.: Asymptotique du spectre des bouteilles magnétiques. Exposé aux Journées de St.-Jean de Monts (juin 1985)
[7] Dufresnoy, A.: Duke Math. J.50, 729-734 (1983) · Zbl 0532.35021 · doi:10.1215/S0012-7094-83-05035-4
[8] Demailly, J.P.: C.R. Acad. Sci, Paris301, 119-122 (1985)
[9] Demailly, J.P.: Ann. Inst. Fourier35, 189-229 (1985)
[10] Iwatsuka, A.: Magnetic Schrödinger operators with compact Resolvent. Preprint 1985 · Zbl 0623.47058
[11] Michau, F.: Comportement asymptotique des valeurs propres de l’opérateur de Schrödinger en présence d’un champ électrique et d’un champ magnétique. Thèse de 3e cycle, Grenoble 1982
[12] Polya, G.: Proc. London Math. Soc.11, 419-433 (1961) · Zbl 0107.41805 · doi:10.1112/plms/s3-11.1.419
[13] Reed, M., Simon, B.: Methods of modern mathematical physics. IV. New York: Academic Press 1978 · Zbl 0401.47001
[14] Tamura, H.: Asymptotic distribution of eigenvalues for Schrödinger operators with Magnetic Fields. Preprint Nagoya University (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.