×

A modified representation of transverse shear in \(C^ 0\) quadrilateral plate elements. (English) Zbl 0607.73081

In this paper we present a special treatment of transverse shear components in \(C^ 0\) bilinear and biquadratic plate elements that excludes the occurrence of locking completely and simultaneously allows the full integration of the element stiffness matrix, thus avoiding the development of kinematic modes. The suggested approach rests upon the standard isoparametric description of the kinematic field and only modifies the shear-strain energy without any change of the bending energy. The first step in constructing modified shear strain polynomials consists of expressing the Cartesian components of transverse shear in terms of the normalized coordinates by means of the usual isoparametric transformation. This process brings to light two distinct polynomials expressed in the normalized coordinates which are subsequently modified with the view of eliminating those coefficients which would lead to spurious constraining in the Kirchhoff limit of vanishing shear strains. Numerical examples are presented that illustrate the performance of the proposed procedure.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K20 Plates
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Zienkiewicz, O. C., The Finite Element Method (1977), McGraw-Hill: McGraw-Hill London · Zbl 0435.73072
[2] Mindlin, R. D., Influence of rotatory inertia and shear on flexural motions of isotropic. elastic plates, ASME J. Appl. Mech., 18, 31-38 (1951) · Zbl 0044.40101
[3] Reissner, E., The effects of transverse shear deformation on the bending of elastic plates, Trans. ASME J. Appl. Mech., 12, 69-77 (1945)
[4] Park, K. C.; Flaggs, D. L., An operational procedure for the symbolic analysis of the finite element method, Comput. Meths. Appl. Mech. Engrg., 42, 37-46 (1984) · Zbl 0512.73061
[5] Wempner, G.; Oden, J. T.; Kross, D., Finite element analysis of thin shells, (Proc. ASCE J. Engrg. Mech. Div., 94 (1968)), 1273-1294
[6] Stricklin, J. A.; Haisler, W. E.; Tisdale, P. R.; Gunderson, R., A rapidly converging triangular plate bending element, AIAA J., 7, 180-181 (1969) · Zbl 0175.22703
[7] Batoz, J. L., An explicit formulation for an efficient triangular plate-bending element, Internat. J. Numer. Meths. Engrg., 18, 1077-1089 (1982) · Zbl 0487.73087
[8] Zienkiewicz, O. C.; Taylor, R. L.; Too, J. M., Reduced integration techniques in general analysis of plates and shells, Internat. J. Numer. Meths. Engrg., 3, 275-290 (1971) · Zbl 0253.73048
[9] Hughes, T. J.R.; Taylor, R. L.; Kanoknukulchai, W., A simple and efficient element for plate bending, Internat. J. Numer. Meths. Engrg., 11, 1529-1543 (1977) · Zbl 0363.73067
[10] Hughes, T. J.R.; Cohen, M.; Haroun, M., Reduced and selective integration techniques in the finite element analysis of plates, Nucl. Engrg. Design, 46, 203-222 (1978)
[11] Belytschko, T.; Tsay, C. S., A stabilization procedure for the quadrilateral plate element with one-point quadrature, Internat. J. Numer. Meths. Engrg., 19, 405-419 (1983) · Zbl 0502.73058
[12] Belytschko, T.; Tsay, C. S.; Liu, W. K., A stabilization matrix for the bilinear Mindlin plate element, Comput. Meths. Appl. Mech. Engrg., 29, 313-327 (1981) · Zbl 0474.73091
[13] Jacquotte, O.-P.; Oden, J. T., Analysis of hourglass instabilities and control in underintegrated finite element methods, Comput. Meths. Appl. Mech. Engrg., 44, 339-363 (1984) · Zbl 0543.73104
[14] de Veubeke, B. Fraeijs, Displacement and equilibrium models in the finite element method, (Zienkiewicz, O. C.; Holister, G. S., Stress Analysis (1965), Wiley: Wiley New York), 145-197 · Zbl 0245.73031
[15] MacNeal, R. H., A simple quadrilateral shell element, Comput. & Structures, 8, 175-183 (1978) · Zbl 0369.73085
[16] Tessler, A.; Dong, S. B., On a hierarchy of conforming Timoshenko beam elements, Comput. & Structures, 14, 335-344 (1981)
[17] Hughes, T. J.R.; Tezduyar, T. E., Finite element based upon Mindlin plate theory, with particular reference to the four-node bi-linear isoparametric element, J. Appl. Mech., 48, 587-596 (1981) · Zbl 0459.73069
[18] Tessler, A.; Hughes, T. J.R., An improved treatment of transverse shear in the Mindlin-type four-node quadrilateral element, Comput. Meths. Appl. Mech. Engrg., 39, 311-335 (1983) · Zbl 0501.73072
[19] Crisfield, M. A., A quadratic Mindlin element using shear constraints, Comput. & Structures, 18, 833-852 (1984) · Zbl 0533.73073
[20] Tessler, A.; Hughes, T. J.R., A three-node Mindlin plate element with improved transverse shear, Comput. Meths. Appl. Mech. Engrg., 50, 71-101 (1985) · Zbl 0562.73069
[21] Park, K. C.; Flaggs, D. L., A symbolic Fourier synthesis of a one-point integrated quadrilateral plate element, Comput. Meths. Appl. Mech. Engrg., 48, 203-236 (1985) · Zbl 0552.73068
[22] Park, K. C.; Stanley, G. M.; Flaggs, D. L., A uniformly reduced, four-node \(C^0\)-shell element with consistent rank corrections, Comput. & Structures, 20, 129-139 (1985) · Zbl 0581.73088
[23] Hughes, T. J.R.; Cohen, M., The “heterosis” finite element for plate bending, Comput. & Structures, 9, 445-450 (1978) · Zbl 0394.73076
[24] Bathe, K. J.; Dvorkin, E. N., A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation, Internat. J. Numer. Meths. Engrg., 21, 367-383 (1985) · Zbl 0551.73072
[25] Pugh, E. D.L.; Hinton, E.; Zienkiewicz, O. C., A study of quadrilateral plate bending elements with reduced integration, Internat. J. Numer. Meths. Engrg., 12, 1059-1079 (1978) · Zbl 0377.73065
[26] Parish, H., A critical survey of the 9-node degenerated shell element with special emphasis on thin shell applications and reduced integration, Comput. Meths. Appl. Mech. Engrg., 20, 323-350 (1979) · Zbl 0419.73076
[27] Belytschko, T.; Stolarski, H.; Liu, W. K.; Carpenter, N.; Ong, J. S.J., Stress projection for membrane and shear locking in shell finite elements, Comput. Meths. Appl. Mech. Engrg., 51, 221-258 (1985) · Zbl 0581.73091
[28] Stolarski, H.; Carpenter, N.; Belytschko, T., A Kirchhoff-mode method for \(C^0\) bilinear and Serendipity plate elements, Comput. Meths. Appl. Mech. Engrg., 50, 121-145 (1985) · Zbl 0552.73069
[29] Timoshenko, S.; Woinowsky-Krieger, S., Theory of Plates and Shells (1959), McGraw-Hill: McGraw-Hill London · Zbl 0114.40801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.