×

Partial differential equations without solution operators in weighted spaces of (generalized) functions. (English) Zbl 0604.35005

Let P(D) be a hypoelliptic partial differential operator with constant coefficients. For a positive convex weight function M let E be one of the classical weighted spaces \[ E(M):=\{f\in C^{\infty}({\mathbb{R}}^ n)| \quad \sup_{| k| \leq n} | D^ kf(x)e^{-M(| x| /n)}| <\infty \quad for\quad any\quad n\in {\mathbb{N}}\} \] (introduced by V. P. Palamodov) or \[ (W_{M,\infty})_ b':=(\{f\in C^{\infty}({\mathbb{R}}^ n)| \quad \sup_{| k| \leq n} | D^ kf(x)e^{M(nx)}| <\infty \quad for\quad any\quad n\in {\mathbb{N}}\})_ b' \] (introduced by I. M. Gelfand/G. E. Shilov). The paper is concerned with the question, if P(D) admits a (continuous linear) right inverse in E. It is shown, that P(D) never has a right inverse in E(M), if the Young conjugate \(M^*\) is stable, while elliptic operators have a right inverse in \((W_{M,\infty})_ b'\), if M is stable. However if (roughly speaking) the restriction of P(x) to two variables is a semielliptic nonelliptic polynomial, then again no right inverse for P(D) exists in \((W_{M,\infty})_ b'\), if M satisfies some mild technical conditions. Especially, if P(D) is a semielliptic nonelliptic operator, then P(D) has no right inverse in the spaces \((S_{\alpha,\infty})_ b'\), \(0<\alpha <1\) (except for at most one value of \(\alpha)\).
In the forthcoming papers by the author [see ”Solution operators for partial differential equations in weighted Gevrey spaces”, preprint and ”Complemented kernels of partial differential operators in weighted spaces of (generalized) functions”, preprint] it is shown, that any partial differential operator with constant coefficients has a right inverse in E, if the weighted space E of (ultra) distributions is defined suitably.

MSC:

35E20 General theory of PDEs and systems of PDEs with constant coefficients
65H10 Numerical computation of solutions to systems of equations
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Boas, R.P.: Entire functions. Academic Press, New York 1954 · Zbl 0058.30201
[2] Friedman, A.: Generalized functions and partial differential equations. Prentice Hall, London 1963 · Zbl 0116.07002
[3] Haslinger, F.: Weighted spaces of entire functions. Ind. J.Math. 35, 193-208 (1986) · Zbl 0579.46016 · doi:10.1512/iumj.1986.35.35011
[4] Hörmander, L.: Linear partial differential operators. Springer, Berlin/Heidelberg/New York 1963 · Zbl 0108.09301
[5] Hörmander, L.: An introduction to complex analysis in several variables. D. van Nostrand, Princeton, N.J. 1966 · Zbl 0138.06203
[6] Langenbruch, M.: Sequence space representations for weighted solutions of hypoeiliptic systems of partial differential operators. Rend.Circ.Mat. Palermo (1986) · Zbl 0619.46040
[7] Langenbruch, M.: Solution operators for partial differential equations in weighted Gevrey spaces. preprint · Zbl 0707.35037
[8] Langenbruch, M.: Complemented kernels of partial differential operators in weighted spaces of (generalized) functions. preprint · Zbl 0671.46022
[9] Meise, R.: Sequence space representations for (DFN)-algebras of entire functions modulo closed ideals. J. Reine Angew. Math. 363, 59-95 (1985) · Zbl 0574.46043 · doi:10.1515/crll.1985.363.59
[10] Meise, R., Taylor, B.A.: Sequence space representations for (FN)-algebras of entire functions modulo closed ideals. to appear · Zbl 0669.46002
[11] Meise, R., Taylor, B.A.: Splitting of closed ideals in (DFN)-algebras of entire functions and the property (DN). manuscript · Zbl 0621.32022
[12] Palamodov, V.P.: The Fourier transform of fastly increasing infinitely differentiable functions. Trud.Mosk.Mat. Ob-wa, 11, 309-350 (1962) (russian)
[13] Vogt, D.: Sequence space representation of spaces of test functions and distributions. Advances in functional analysis, holomorphy and approximation theory, G. Zapata (Ed.), Marcel Dekker, LN in Pure and Appl. Math. 83, 405-443 (1983)
[14] Vogt, D.: Eine Charakterisierung der Potenzreihenräume von endlichem Typ und ihre Folgerungen, manuscripta math. 37, 269-301 (1982) · Zbl 0512.46003 · doi:10.1007/BF01166224
[15] Vogt, D.: Subspaces and quotients of (s). Funct. Analysis, Surv. and Rec. Results, 167-187, North Holland 1977
[16] Vogt, D.: Charakterisierung der Unterräume von s. Math. Z. 155, 109-117 (1977) · Zbl 0337.46015 · doi:10.1007/BF01214210
[17] Vogt, D., Wagner, M.J.: Charakterisierung der Quotientenräume von s und eine Vermutung von Martineau. Stud. Math. 67, 225-240 (1980) · Zbl 0464.46010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.