×

Principles for the design of billiards with nonvanishing Lyapunov exponents. (English) Zbl 0602.58029

We introduce a large class of billiards with convex pieces of the boundary which have nonvanishing Lyapunov exponents.

MSC:

37A99 Ergodic theory
58C35 Integration on manifolds; measures on manifolds
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arnold, V.I.: Mathematical methods of classical mechanics. Berlin, Heidelberg, New York: Springer 1978 · Zbl 0386.70001
[2] Benettin, G.: Power law behavior of Lyapunov exponents in some conservative dynamical systems. Physica13 D, 211-220 (1984) · Zbl 0578.70024
[3] Benettin, G., Strelcyn, J.-M.: Numerical experiments on the free motion of a point mass moving in a plane convex region: stochastic transition and entropy. Phys. Rev. A17, 773-785 (1978)
[4] Birkhoff, G.: Lattice theory, AMS Colloquium Publications, Vol. 25, 3rd Ed. Chap. XVI (1968) · Zbl 0063.00402
[5] Bunimovich, L.A.: On the ergodic properties of nowhere dispersing billiards. Commun. Math. Phys.65, 295-312 (1979) · Zbl 0421.58017 · doi:10.1007/BF01197884
[6] Bunimovich, L.A., Sinai, Ya.G.: On a fundamental theorem in the theory of dispersing billiards. Math. USSR, Sb.19, 3, 407-423 (1973) · Zbl 0281.58009 · doi:10.1070/SM1973v019n03ABEH001786
[7] Cornfeld, I.P., Fomin, S.V., Sinai, Ya.G.: Ergodic theory. Berlin, Heidelberg, New York: Springer 1982, Chap. 6 · Zbl 0493.28007
[8] Douady, R.: Applications du théorème des tores invariants. Thesis, University of Paris VII (1982)
[9] Katok, A., Strelcyn, J.-M. In collaboration with Ledrappier, F., Przytycki, F.: Smooth maps with singularities: Invariant manifolds entropy and billiards. Lecture Notes in Mathematics (to appear)
[10] Lazutkin, V.F.: On the existence of caustics for the billiard ball problem in a convex domain. Math. USSR, Izv.7, 185-215 (1973) · Zbl 0277.52002 · doi:10.1070/IM1973v007n01ABEH001932
[11] Ledrappier, F., Strelcyn, J.-M.: A proof of the estimation from below in Pesin’s entropy formula. Ergodic Theory Dyn. Syst.2, 203-219 (1982) · Zbl 0533.58022 · doi:10.1017/S0143385700001528
[12] Mather, J.N.: Glancing billiards. Ergodic Theory Dyn. Syst.2, 397-403 (1982) · Zbl 0525.58021 · doi:10.1017/S0143385700001681
[13] Oseledec, V.I.: The multiplicative ergodic theorem. The Lyapunov characteristic numbers of a dynamical system. Trans. Mosc. Math. Soc.19, 197-231 (1968)
[14] Pesin, Ya. B.: Lyapunov characteristic exponents and smooth ergodic theory. Russ. Math. Surveys32, 4, 55-114 (1977) · Zbl 0383.58011 · doi:10.1070/RM1977v032n04ABEH001639
[15] Robnik, M.: Classical dynamics of a family of billiards with analytic boundaries. J. Phys. A: Math. Gen.16, 3971-3986 (1983) · Zbl 0622.70011 · doi:10.1088/0305-4470/16/17/014
[16] Sinai, Ya. G.: Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards. Russ. Math. Surveys25, 2, 137-189 (1970) · Zbl 0263.58011 · doi:10.1070/RM1970v025n02ABEH003794
[17] Wojtkowski, M.: Invariant families of cones and Lyapunov exponents. Ergodic Theory Dyn. Syst.5, 145-161 (1985) · Zbl 0578.58033 · doi:10.1017/S0143385700002807
[18] Wojtkowski, M.: On uniform contraction generated by positive matrices. In: Random matrices and their applications. Cohen, J.E., Kesten, H., Newman, C.M. (eds.). Contemporary Mathematics Vol. 50. AMS 1986 · Zbl 0584.60017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.