×

Semicontinuity for the local Hilbert function. (English) Zbl 0595.13014

Let X be a noetherian scheme, and let (\({\mathfrak O,m)}\) be the local ring of X at a point x. The Samuel and Hilbert functions are defined by \(S_{X,x}(n)=length {\mathfrak O}/{\mathfrak m}^{n+1}\), \(H_{X,x}(n)=length {\mathfrak m}^ n/{\mathfrak m}^{n+1}\). For every function \(f:\quad {\mathbb{Z}}^+\to {\mathbb{Z}}\) one defines: \((\Delta f)(n)=f(n)-f(n-1)\) for \(n\geq 1\), \((\Delta f)(0)=f(0)\). Our purpose it to prove the following semicontinuity theorem: Let \({\mathfrak O}\) be a local excellent ring, \(X=Spec {\mathfrak O}\) and let x be the closed point of X. If y is the generic point of an r-dimensional integral subscheme of X, then \(S_{X,y}(n)\leq \Delta^ rS_{X,x}(n)\). - Moreover, we prove that the Hilbert function stabilizes in any sequence of permissible blowing-ups.

MSC:

13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Bennet, B.M.: On the characteristic function of a local ring. Ann. Math.91, 25-87 (1970) · Zbl 0198.06101 · doi:10.2307/1970601
[2] Grothendieck, A., Dieudonné, J.: E.G.A. IV, Publ. Math. IHES no 32, (1967)
[3] Hartshorne, R.: Connectedness of the Hilbert scheme. Publ. Math. IHES no 29 (1966) · Zbl 0171.41502
[4] Hironaka, H.: Resolution of singularities of an algebraic variety of characteristic zero. Ann. Math.79, 109-236 (1964) · Zbl 0122.38603 · doi:10.2307/1970486
[5] Singh, B.: Effect of a permissible blowing-up on the local Hilbert functions. Invent. Math.26, 201-212 (1974) · Zbl 0277.14004 · doi:10.1007/BF01418949
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.