×

Power series spaces and weighted solution spaces of partial differential equations. (English) Zbl 0591.35013

Let \(P(D)\) be a hypoelliptic system of partial differential operators with constant coefficients and let \(M\) be a weight function. The paper is concerned with the following weighted solution spaces of \(P(D)\): \[ N_ r:=\{f\in C^{\infty}(\mathbb R^ N)^ s\mid P(D)f=0; \| fe^{-\delta \cdot M}\|_{\infty}<\infty \quad\text{for some}\;\delta >r\} \]
\[ N^{\rho}:=\{f\in C^{\infty}(\mathbb R^ N)^ s\mid P(D)f=0; \| fe^{-\delta \cdot M}\|_{\infty}<\infty \quad\text{for some}\;\delta <\rho \}. \] The spaces are provided with their natural projective (resp. inductive) topology. If \(M\) satisfies some mild technical conditions, then there is a sequence \(\alpha =(\alpha_ n)\), such that \(N_ r\) is (linear topologically) isomorphic to \(\Lambda_ 0(\alpha)\) and \(N^{\rho}\) is isomorphic to \(\Lambda_ 0(\alpha)_ b'\) for \(0<r\), \(\rho <\infty\). So \(N_ r\) and \(N^{\rho}\) have a basis. The power series space of finite type \(\Lambda_ 0(\alpha)\) is independent of \(r\) and \(\rho\). Especially, the dual \((N_ r)_ b'\) is isomorphic to \(N^{\rho}\) for \(0<r\), \(\rho <\infty\) (and fixed \(P(D)\)). \(\Lambda_ 0(\alpha)\) may be calculated for many systems and weight functions.

MSC:

35H10 Hypoelliptic equations
46F99 Distributions, generalized functions, distribution spaces
35A25 Other special methods applied to PDEs
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Gelfand, I.M., Shilov, G.E.: Generalized functions, Vol. 2, New York/London: Academic Press 1968 · Zbl 0177.36302
[2] Hansen, S.: Localizable analytically uniform spaces and the fundamental principle. Trans. Am. Math. Soc.264(1), 235-250 (1981) · Zbl 0482.46023 · doi:10.1090/S0002-9947-1981-0597879-2
[3] H?rmander, L.: Introduction to complex analysis in several variables. Princeton: van Nostrand 1966
[4] Jarchow, H.: Locally convex spaces. Stuttgart: Teubner 1981 · Zbl 0466.46001
[5] Komatsu, H.: Projective and injective limits of weakly compact sequences of locally convex spaces. J. Math. Soc. Japan19, 366-383 (1967) · Zbl 0168.10603 · doi:10.2969/jmsj/01930366
[6] Meise, R.: Sequence space representations for (DFN)-algebras of entire functions modulo closed ideals. J. Reine Angew. Math.363, 59-95 (1985) · Zbl 0574.46043 · doi:10.1515/crll.1985.363.59
[7] Meise, R., Taylor, B.A.: Sequence space representations of (FN)-algebras of entire functions modulo closed ideals. To appear in Studia Math. · Zbl 0669.46002
[8] Langenbruch, M.: Darstellung von Distributionen endlicher Ordnung als Randwerte zu hypoelliptischen Differentialoperatoren. Math. Ann.248, 1-17 (1980) · Zbl 0423.46034 · doi:10.1007/BF01349252
[9] Langenbruch, M.: Bases in solution sheaves of systems of partial differential equations. To appear in J. Reine Angew. Math. · Zbl 0595.35021
[10] Langenbruch, M.: Sequence space representations for weighted solution spaces of hypoelliptic systems of partial differential operators. Rend. Circ. Mat. Palermo35 (1986) · Zbl 0619.46040
[11] Langenbruch, M.: Isomorphieklassen von L?sungsr?umen partieller Differentialgleichungssysteme, Habilitationsschrift M?nster 1984 · Zbl 0556.46001
[12] Vogt, D.: Eine Charakterisierung der Potenzreihenr?ume von endlichem Typ und ihre Folgerungen. Manuscr. Math.37, 269-301 (1982) · Zbl 0512.46003 · doi:10.1007/BF01166224
[13] Vogt, D.: Charakterisierung der Unterr?ume eines nuklearen stabilen Potenzreihenraumes von endlichem Typ. Studia Math.71, 251-270 (1982) · Zbl 0539.46009
[14] Vogt, D.: Charakterisierung der Unterr?ume vons. Math. Z.155, 109-117 (1977) · Zbl 0337.46015 · doi:10.1007/BF01214210
[15] Haslinger, F.: Weighted spaces of entire functions. Indiana Univ. Math. J.35, 193-208 (1986) · Zbl 0579.46016 · doi:10.1512/iumj.1986.35.35011
[16] Pietsch, A.: Nukleare lokalkonvexe R?ume. Berlin: Akademie-Verlag 1969 · Zbl 0184.14602
[17] Ramanujan, M.S., Terzio?lu, T.: Power series spaces? ? (?) of finite type and related nuclearities. Studia Math.53, 1-13 (1975) · Zbl 0306.46016
[18] Terzio?lu, T.: Die diametrale Dimension in lokalkonvexen R?umen. Collect. Math.20, 49-99 (1969)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.