×

A recurrence relation for Chebyshevian B-splines. (English) Zbl 0583.41011

The fundamental recurrence relation for polynomial B-splines is generalized to Chebyshevian B-splines.

MSC:

41A15 Spline approximation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] H. Arndt (1978):Konvexe Zerlegung von Differenzenquotienten mit Anwendung auf die Splineinterpolation. In: Numerische Methoden der Approximations Theorie, vol. 4, L. Collatz, G. Meinardus, H. Werner (eds.), ISNM 42 Basel, Birkhauser Verlag: pp. 33–47. · Zbl 0407.65008
[2] W. Boehm (1980):Inserting new knots into B-spline curves. Comput. Aided Design,12: 199–201. · doi:10.1016/0010-4485(80)90154-2
[3] C. de Boor (1972):On calculating with B-splines. J. Approx. Theory,6: 50–62. · Zbl 0239.41006 · doi:10.1016/0021-9045(72)90080-9
[4] C. Brezinski (1980):The Mühlbach-Neville-Aitken Algorithm and some extensions. BIT,20: 444–451. · Zbl 0462.65006 · doi:10.1007/BF01933638
[5] E. Cohen, T. Lyche, R. Riesenfeld (1980):Discrete B-splines and subdivision techniques in computer aided geometric design and computer graphics. Comput. Graphics Image Processing,14: 87–111. · doi:10.1016/0146-664X(80)90040-4
[6] W. A. Coppel (1971): Disconjugacy. New York: Springer Verlag. (Lecture Notes in Mathematics, vol. 220). · Zbl 0224.34003
[7] M. Cox (1972):The numerical evaluation of B-splines. J. Inst. Math. Appl.,10: 134–149. · Zbl 0252.65007 · doi:10.1093/imamat/10.2.134
[8] J. Favard (1940):Sur l’interpolation. J. Math. Pures Appl.,19: 281–306. · Zbl 0026.01201
[9] S. Karlin (1968): Total Positivity, vol. 1. Stanford, California: Stanford University Press. · Zbl 0219.47030
[10] S. Karlin, W. Studden (1966): Tchebycheff Systems with Applications in Analysis and Statistics. New York: Interscience Publishers. · Zbl 0153.38902
[11] T. Lyche (1983):A Recurrence Relation for Chebyshevian B-Splines. College Station, Texas: Texas A & M University (Report CAT #37, Dept. of Mathematics, Texas A&M Univ., Sept. 1983).
[12] T. Lyche, R. Winther (1979):A stable recurrence relation for trigonometric B-splines. J. Approx. Theory,25: 266–279. · Zbl 0414.41005 · doi:10.1016/0021-9045(79)90017-0
[13] M. Marsden (1970):An identity for spline functions with applications to variation diminishing spline approximation, J. Approx. Theory,3: 7–49. · Zbl 0192.42103 · doi:10.1016/0021-9045(70)90058-4
[14] G. Mühlbach (1973):A recurrence formula for generalized divided differences and some applications. J. Approx. Theory,9: 165–172. · Zbl 0273.41026 · doi:10.1016/0021-9045(73)90104-4
[15] G. Mühlbach (1979):A remark on calculating with B-splines. Rev. Roum. Math. Pures Appl.,24: 1449–1450. · Zbl 0421.65003
[16] T. Popoviciu (1958):Sur le reste dans certaines formules linéaires d’approximation de l’analyse. Mathematica (Cluj),1(24)1: 95–142. · Zbl 0091.24603
[17] K. Scherer, L. L. Schumaker (1980):A dual basis for L-splines and applications. J. Approx. Theory,29: 151–169. · Zbl 0463.41008 · doi:10.1016/0021-9045(80)90113-6
[18] L. L. Schumaker (1981): Spline Functions: Basic Theory, New York: John Wiley & Sons. · Zbl 0449.41004
[19] L. L. Schumaker (1982):On recursions for generalized splines. J. Approx. Theory,36: 16–31. · Zbl 0529.41011 · doi:10.1016/0021-9045(82)90067-3
[20] L. L. Schumaker (1983):On hyperbolic splines. J. Approx. Theory,38: 144–166. · Zbl 0512.41008 · doi:10.1016/0021-9045(83)90121-1
[21] D. C. Schweikert (1966):An interpolation curve using a spline in tension. J. Math. Phys.,45: 312–317. · Zbl 0146.14102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.