×

Homogeneous Borel sets of ambiguous class two. (English) Zbl 0582.54023

The author proves that in the Cantor set there are exactly \(\aleph_ 1\) topologically distinct homogeneous ambiguous Borel class 2 sets, and he describes these spaces.
Reviewer: J.E.Jayne

MSC:

54H05 Descriptive set theory (topological aspects of Borel, analytic, projective, etc. sets)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Paul Alexandroff, Über nulldimensionale Punktmengen, Math. Ann. 98 (1928), no. 1, 89 – 106 (German). · JFM 53.0559.01 · doi:10.1007/BF01451582
[2] R. D. Anderson, On topological infinite deficiency, Michigan Math. J. 14 (1967), 365 – 383. · Zbl 0148.37202
[3] L. E. J. Brouwer, On the structure of perfect sets of points, Proc. Akad. Amsterdam 12 (1910), 785-794.
[4] E. van Douwen, unpublished. · Zbl 0923.03061
[5] F. van Engelen, unpublished.
[6] Fons van Engelen and Jan van Mill, Borel sets in compact spaces: some Hurewicz type theorems, Fund. Math. 124 (1984), no. 3, 271 – 286. · Zbl 0559.54034
[7] Ryszard Engelking, Topologia ogólna, Państwowe Wydawnictwo Naukowe, Warsaw, 1975 (Polish). Biblioteka Matematyczna. Tom 47. [Mathematics Library. Vol. 47]. Ryszard Engelking, General topology, PWN — Polish Scientific Publishers, Warsaw, 1977. Translated from the Polish by the author; Monografie Matematyczne, Tom 60. [Mathematical Monographs, Vol. 60].
[8] R. Engelking, W. Holsztyński, and R. Sikorski, Some examples of Borel sets, Colloq. Math. 15 (1966), 271 – 274. · Zbl 0147.22703
[9] R. C. Freiwald, R. McDowell, and E. F. McHugh Jr., Borel sets of exact class, Colloq. Math. 41 (1979), no. 2, 187 – 191. · Zbl 0441.54019
[10] A. Gutek, On extending homeomorphisms on the Cantor set, Topological structures, II (Proc. Sympos. Topology and Geom., Amsterdam, 1978) Math. Centre Tracts, vol. 115, Math. Centrum, Amsterdam, 1979, pp. 105 – 116.
[11] F. Hausdorff, Grundzüge der Mengenlehre, Leipzig, 1914. · JFM 45.0123.01
[12] -, Die schlichten stetigen Bilder des Nullraums, Fund. Math. 29 (1937), 151-158. · JFM 63.0931.01
[13] W. Hurewicz, Relativ perfekte Teile von Punktmengen und Mengen \( (A)\), Fund. Math. 12 (1928), 78-109. · JFM 54.0097.06
[14] B. Knaster and M. Reichbach, Notion d’homogénéité et prolongements des homéomorphies, Fund. Math. 40 (1953), 180 – 193 (French). · Zbl 0051.40102
[15] K. Kuratowski, Topologie. I, 2nd ed., PWN, Warsaw, 1948. · JFM 57.0758.05
[16] Jan van Mill, Characterization of some zero-dimensional separable metric spaces, Trans. Amer. Math. Soc. 264 (1981), no. 1, 205 – 215. · Zbl 0493.54018
[17] Jan van Mill, Characterization of a certain subset of the Cantor set, Fund. Math. 118 (1983), no. 2, 81 – 91. · Zbl 0533.54020
[18] A. V. Ostrovskiĭ, Continuous images of the Cantor product \?\times \? of a perfect set \? and the rational numbers \?, Seminar on General Topology, Moskov. Gos. Univ., Moscow, 1981, pp. 78 – 85 (Russian).
[19] Jean Pollard, On extending homeomorphisms on zero-dimensional spaces, Fund. Math. 67 (1970), 39 – 48. · Zbl 0198.27703
[20] Doron Ravdin, On extensions of homeomorphisms to homeomorphisms, Pacific J. Math. 37 (1971), 481 – 495. · Zbl 0219.54008
[21] Jean Saint-Raymond, La structure borélienne d’Effros est-elle standard?, Fund. Math. 100 (1978), no. 3, 201 – 210 (French). · Zbl 0434.54028
[22] W. Sierpiński, Sur une propriété topologique des ensembles dénombrables denses en soi, Fund. Math. 1 (1920), 11-16. · JFM 47.0175.03
[23] -, Sur une définition topologique des ensembles \( {F_{\sigma \delta }}\), Fund. Math. 6 (1924), 24-29.
[24] R. Sikorski, Some examples of Borel sets, Colloq. Math. 5 (1958), 170 – 171. · Zbl 0085.03901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.