×

Crack nucleation in a peridynamic solid. (English) Zbl 1425.74045

Summary: A condition for the emergence of a discontinuity in an elastic peridynamic body is proposed, resulting in a material stability condition for crack nucleation. The condition is derived by determining whether a small discontinuity in displacement, superposed on a possibly large deformation, grows over time. Stability is shown to be determined by the sign of the eigenvalues of a tensor field that depends only on the linearized material properties. This condition for nucleation of a discontinuity in displacement can be interpreted in terms of the dynamic stability of plane waves with very short wavelength. A numerical example illustrates that cracks in a peridynamic body form spontaneously as the body is loaded.

MSC:

74A45 Theories of fracture and damage
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Agwai A, Guven I, Madenci E (2008) Peridynamic theory for failure prediction in multilayer thin-film structures of electronic packages. In: 2008 electronic components and technology conference. IEEE, pp 1614–1619
[2] Agwai A, Guven I, Madenci E (2008) Peridynamic theory for impact damage prediction in electronic packages due to drop. In: 2008 electronic components and technology conference. IEEE, pp 1048–1053
[3] Agwai A, Guven I, Madenci E (2009) Damage prediction for electronic package drop test using finite element and peridynamic theory. In: 2008 electronic components and technology conference. IEEE, pp 565–569
[4] Askari E, Xu J, Silling S (2006) Peridynamic analysis of damage and failure in composites. In: 44th AIAA aerospace sciences meeting and exhibit, Reno, NV, AIAA2006-88
[5] Bazant ZP, Belytschko T (1985) Wave propagation in a strain-softening bar: exact solution. J Eng Mech (ASCE) 111: 381–389 · doi:10.1061/(ASCE)0733-9399(1985)111:3(381)
[6] Belytschko T, Chen H, Xu J, Zi G (2003) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Methods Eng 58: 1873–1905 · Zbl 1032.74662 · doi:10.1002/nme.941
[7] Bobaru F (2007) Influence of van der Waals forces on increasing the strength and toughness in dynamic fracture of nanofibre networks: a peridynamic approach. Model Simul Mater Sci Eng 15: 397–417 · doi:10.1088/0965-0393/15/5/002
[8] Colavito KW, Kilic B, Celik E, Madenci E, Askari E, Silling S (2007) Effect of void content on stiffness and strength of composites by a peridynamic analysis and static indentation test. In: 48th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, Honolulu, HI, AIAA2007-2251
[9] Dayal K, Bhattacharya K (2006) Kinetics of phase transformations in the peridynamic formulation of continuum mechanics. J Mech Phys Solids 54: 1811–1842 · Zbl 1120.74690 · doi:10.1016/j.jmps.2006.04.001
[10] Gerstle W, Sau N, Silling S (2007) Peridynamic modeling of concrete structures. Nucl Eng Des 237: 1250–1258 · doi:10.1016/j.nucengdes.2006.10.002
[11] Hill R (1962) Acceleration waves in solids. J Mech Phys Solids 10: 1–16 · Zbl 0111.37701 · doi:10.1016/0022-5096(62)90024-8
[12] Kilic B, Madenci E (2009) Prediction of crack paths in a quenched glass plate by using peridynamic theory. Int J Fract 156: 165–177 · Zbl 1273.74455 · doi:10.1007/s10704-009-9355-2
[13] Kilic B, Agwai A, Madenci E (2009) Peridynamic theory for progressive damage prediction in center-cracked composite laminates. Compos Struct 90: 141–151 · doi:10.1016/j.compstruct.2009.02.015
[14] Klein P, Gao H (1998) Crack nucleation and growth as strain localization in a virtual-bond continuum. Eng Fract Mech 61: 21–48 · doi:10.1016/S0013-7944(98)00048-4
[15] Knowles JK, Sternberg E (1975) On the ellipticity of the equations of nonlinear elastostatics for a special material. J Elast 5: 341–361 · Zbl 0323.73010 · doi:10.1007/BF00126996
[16] Knowles JK, Sternberg E (1978) On the failure of ellipticity and the emergence of discontinuous deformation gradients in plane finite elastostatics. J Elast 8: 329–379 · Zbl 0422.73038 · doi:10.1007/BF00049187
[17] Kunin IA (1983) Elastic media with microstructure II: three-dimensional models. Springer, Berlin · Zbl 0536.73003
[18] Leroy Y, Ortiz M (1989) Finite element analysis of strain localization in frictional materials. Int J Numer Anal Methods Geomech 13: 53–74 · doi:10.1002/nag.1610130106
[19] Rudnicki JW, Rice JR (1975) Conditions for the localization of deformation in pressure-sensitive dilatant materials. J Mech Phys Solids 23: 371–394 · doi:10.1016/0022-5096(75)90001-0
[20] Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48: 175–209 · Zbl 0970.74030 · doi:10.1016/S0022-5096(99)00029-0
[21] Silling SA (2003) Dynamic fracture modeling with a meshfree peridynamic code. In: Bathe KJ (eds) Computational fluid and solid mechanics. Elsevier, Amsterdam, pp 641–644
[22] Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83: 1526–1535 · doi:10.1016/j.compstruc.2004.11.026
[23] Silling SA, Bobaru F (2005) Peridynamic modeling of membranes and fibers. Int J Non-Linear Mech 40: 395–409 · Zbl 1349.74231 · doi:10.1016/j.ijnonlinmec.2004.08.004
[24] Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88: 151–184 · Zbl 1120.74003 · doi:10.1007/s10659-007-9125-1
[25] Silling SA (2010) Linearized theory of peridynamic states. J. Elast. doi: 10.1007/s10659-009-9234-0 · Zbl 1188.74008
[26] Xu J, Askari A, Weckner O, Razi H, Silling S (2007) Damage and failure analysis of composite laminates under biaxial loads. In: 48th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, Honolulu, HI, AIAA2007-2315
[27] Xu J, Askari A, Weckner O, Silling S (2008) Peridynamic analysis of impact damage in composite laminates. J Aerosp Eng 21: 187–194 · doi:10.1061/(ASCE)0893-1321(2008)21:3(187)
[28] Weckner O, Abeyaratne R (2005) The effect of long-range forces on the dynamics of a bar. J Mech Phys Solids 53: 705–728 · Zbl 1122.74431 · doi:10.1016/j.jmps.2004.08.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.