×

Stability of reducible quadrature methods for Volterra integral equations of the second kind. (English) Zbl 0573.65104

Based on the test equation \[ y(t)=1+\int^{t}_{0}(\lambda +\mu t+\nu s)y(s)ds \] a stability analysis of reducible quadrature methods for second kind Volterra integral equations is presented. Since the above integral equation is equivalent to a second order differential equation (with non-constant coefficients), the numerical solution satisfies a finite recurrence relation. The boundedness of the analytical solution of the differential equation as well as that of the numerical solution of the recurrence relation are investigated. The results are then illustrated for the \(\theta\)-method. The importance of the above test equation is still not clear, since in applications usually the kernel is bounded or converges to zero when t-s\(\to \infty\).
Reviewer: E.Hairer

MSC:

65R20 Numerical methods for integral equations
45D05 Volterra integral equations
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Baker, C.T.H., Keech, M.S.: Stability regions in the numerical treatment of Volterra integral equations. SIAM J. Numer. Anal.15, 394-417 (1978) · Zbl 0409.65056 · doi:10.1137/0715025
[2] Brunner, H.: A survey of recent advances in the numerical treatment of Volterra integral and integro-differential equations. J. Comput. Appl. Math.8, 213-229 (1982) · Zbl 0485.65087 · doi:10.1016/0771-050X(82)90044-4
[3] Brunner, H., Lambert, J.D.: Stability of numerical methods for Volterra integro-differential equations. Computing12, 75-89 (1974) · Zbl 0282.65088 · doi:10.1007/BF02239501
[4] Coppel, W.A.: Stability and asymptotic behavior of differential equations. Boston: Heath 1965 · Zbl 0154.09301
[5] Gladwin, C.J., Jeltsch, R.: Stability of quadrature rule methods for first kind Volterra integral equations. BIT14, 144-151 (1974) · Zbl 0283.65069 · doi:10.1007/BF01932943
[6] Henrici, P.: Discrete variable methods in ordinary differential equations. New York: Wiley 1962 · Zbl 0112.34901
[7] Jackiewicz, Z., Kwapisz, M.: A note on the stability of ?-methods for Volterra integral equations of the second kind. Numerical Analysis Technical Report 65R20-1, University of Arkansas, Fayetteville 1983. Apl. Mat. (to appear) · Zbl 0557.65093
[8] Lambert, J.D.: Computational methods in ordinary differential equations. New York: Wiley 1973 · Zbl 0258.65069
[9] Matthys, J.: A-stable multistep methods for Volterra integro-differential equations. Numer. Math.27, 85-94 (1976) · Zbl 0319.65072 · doi:10.1007/BF01399087
[10] Miller, J.J.H.: On the location of zeros of certain classes of polynomials with applications to numerical analysis. J. Inst. Maths. Applics.8, 397-406 (1971) · Zbl 0232.65070 · doi:10.1093/imamat/8.3.397
[11] Milne-Thomson, L.M.: The calculus of finite differences. London: MacMillan 1933 · JFM 59.1111.01
[12] Perron, O.: Über einen Satz des Herrn Poincaré. J. Reine Angew. Math.136, 17-37 (1909) · JFM 40.0385.01 · doi:10.1515/crll.1909.136.17
[13] Perron, O.: Über die Poincarésche lineare Differenzengleichungen. J. Reine Angew. Math.137, 6-64 (1910) · doi:10.1515/crll.1910.137.6
[14] Perron, O.: Über Summengleichungen und Poincarésche Differenzengleichungen. Math. Ann.84, 1-15 (1921) · JFM 48.0479.01 · doi:10.1007/BF01458689
[15] Perron, O.: Über Stabilität und asymptotisches Verhalten der Lösungen eines Systems endlicher Differenzengleichungen. J. Reine Angew. Math.161, 41-64 (1929) · JFM 55.0869.02 · doi:10.1515/crll.1929.161.41
[16] Perron, O.: Über linear Differenzengleichungen. Acta Math.34, 109-137 (1910) · JFM 41.0368.01 · doi:10.1007/BF02393125
[17] Perron, O.: Über lineare Differenzengleichungen und eine Anwendung auf lineare Differentialgleichungen mit Polynomkoeffizienten. Math. Z.72, 16-24 (1959) · Zbl 0087.08702 · doi:10.1007/BF01162933
[18] Poincare, H.: Sur les équations linéaires aux différentielles ordinaires et aux differences finies. Amer. J. Math.7, 203-258 (1885) · JFM 17.0290.01 · doi:10.2307/2369270
[19] van der Houwen, P.J., Wolkenfelt, P.H.M.: On the stability of multistep formulas for Volterra integral equations of the second kind. Computing24, 341-347 (1980) · Zbl 0427.65088 · doi:10.1007/BF02237819
[20] Wolkenfelt, P.H.M.: On the numerical stability of reducible quadrature methods for second kind Volterra integral equations. Z. Angew. Math. Mech.61, 399-401 (1981) · Zbl 0466.65073 · doi:10.1002/zamm.19810610808
[21] Wolkenfelt, P.H.M.: Reducible quadrature methods for Volterra integral equations of the first kind. BIT21, 232-241 (1981) · Zbl 0463.65090 · doi:10.1007/BF01933168
[22] Wolkenfelt, P.H.M.: The construction of reducible quadrature rules for Volterra integral and integro-differential equations. IMA J. Numer. Anal.2, 131-152 (1982) · Zbl 0481.65084 · doi:10.1093/imanum/2.2.131
[23] Wolkenfelt, P.H.M.: Modified multilag methods for Volterra functional equations. Math. Comp.40, 301-316 (1983) · Zbl 0501.65063 · doi:10.1090/S0025-5718-1983-0679447-2
[24] Wolkenfelt, P.H.M.: On the relation between the repetition factor and numerical stability of direct quadrature methods for second kind Volterra integral equations. SIAM J. Numer. Anal.20, 1049-1061 (1983) · Zbl 0526.65094 · doi:10.1137/0720074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.