×

p-adic congruences and modular forms of half integer weight. (English) Zbl 0571.10030

This paper investigates p-adic interpolation of modular forms of half integer weight, and gives evidence that under certain circumstances p- adic congruences between forms of integer weight descend via the Shimura lifting to congruences between corresponding forms of half integer weight. First, an example is given: the Ramanujan congruence descends to weight 13/2; this gives a mod 691 factorization into a product of Bernoulli numbers for the algebraic part of the central critical value of the twisted L-function of the discriminant form.
Next, it is shown that it makes sense to speak of half integer weight forms of p-adic weight. Then the generalized class number Eisenstein series of half integer weight are interpolated p-adically; this motivates certain conjectures concerning congruences between central critical values of Hecke L-series corresponding to elliptic curves. These conjectures are then shown to be compatible with the Katz-Manin-Vishik interpolation of two-variable Eisenstein series. Finally, numerical evidence in support of the conjectures is given in the case of two families of Hecke series corresponding to certain elliptic curves with complex multiplication by third and fourth roots of unity.

MSC:

11F85 \(p\)-adic theory, local fields
11F33 Congruences for modular and \(p\)-adic modular forms
11S80 Other analytic theory (analogues of beta and gamma functions, \(p\)-adic integration, etc.)
11F11 Holomorphic modular forms of integral weight
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Birch, B.J., Kuyk, W., eds.: Tables on elliptic curves. Modular functions of one variable IV. Lect. Notes Math. 476, 81-144. Berlin, Heidelberg, New York: Springer 1975
[2] Cohen, H.: Sums involving the values at negative integers ofL-functions of quadratic characters. Math. Ann.217, 271-285 (1975) · Zbl 0311.10030 · doi:10.1007/BF01436180
[3] Cohen, H., Oesterlé, J.: Dimension des espaces de formes modulaires. Modular functions of one variable VI. Lect. Notes Math. 627, 69-78. Berlin, Heidelberg, New York: Springer 1977
[4] Goldstein, C., Schappacher, N.: Séries d’Eisenstein et fonctionsL de courbes elliptiques à multiplication complexe. J. Reine Angew. Math.327, 184-218 (1981) · Zbl 0456.12007
[5] Greenberg, R.: On the Birch and Swinnerton-Dyer conjecture. Invent. Math.72, 241-265 (1983) · Zbl 0546.14015 · doi:10.1007/BF01389322
[6] Gross, B.: On the factorization ofp-adicL-series. Invent. Math.57, 83-95 (1980) · Zbl 0472.12011 · doi:10.1007/BF01389819
[7] Gross, B., Zagier, D.: On the critical values of HeckeL-series. Soc. Math. de France, Mémoire No. 2, 49-54 (1980) · Zbl 0462.14015
[8] Hardy, G.H.: On the representation of a number as the sum of any number of squares, and in particular of five or seven. Proc. Nat. Acad. Sci.4, 189-193 (1918) · JFM 46.1443.05 · doi:10.1073/pnas.4.7.189
[9] Hecke, E.: Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung. Math. Ann.112, 664-699 (1936). (=Math. Werke, No. 33, 591-626.) · Zbl 0014.01601 · doi:10.1007/BF01565437
[10] Iwasawa, K.: Lectures onp-adicL-functions. Princeton: Princeton Univ. Press 1972
[11] Katz, N.M.:p-adic properties of modular schemes and modular forms. Modular functions of one variable. II. Lect. Notes Math. 350, 69-190. Berlin, Heidelberg, New York: Springer 1973 · Zbl 0271.10033
[12] Katz, N.M.:p-adic interpolation of real analytic Eisenstein series. Ann. Math.104, 459-571 (1976) · Zbl 0354.14007 · doi:10.2307/1970966
[13] Katz, N.M.: The Eisenstein measure andp-adic interpolation. Am. J. Math.99, 238-311 (1977) · Zbl 0375.12022 · doi:10.2307/2373821
[14] Koblitz, N.: Introduction to elliptic curves and modular forms. Berlin, Heidelberg, New York: Springer 1984 · Zbl 0553.10019
[15] Kohnen, W.: Kongruenzen für Hecke-Eisensteinsche Reihen reell-quadratischer Körper. Diplomarbeit, Bonn, 1977
[16] Kohnen, W.: Modular forms of half integral weight on? 0(4). Math. Ann.248, 249-266 (1980) · Zbl 0422.10015 · doi:10.1007/BF01420529
[17] Kohnen, W.: Beziehungen zwischen Modulformen halbganzen Gewichts und Modulformen ganzen Gewichts. Bonn. Math. Schr.131, (1981) · Zbl 0451.10016
[18] Kohnen, W.: Newforms of half-integral weight. J. Reine Angew. Math.333, 32-72 (1982) · Zbl 0475.10025 · doi:10.1515/crll.1982.333.32
[19] Kohnen, W.: Fourier coefficients of modular forms of half-integral weight. Math. Ann.271, 237-268 (1985) · Zbl 0553.10020 · doi:10.1007/BF01455989
[20] Kohnen, W., Zagier, D.: Values ofL-series of modular forms at the center of the critical strip. Invent. Math.64, 175-198 (1981) · Zbl 0468.10015 · doi:10.1007/BF01389166
[21] Kohnen, W., Zagier, D.: Modular forms with rational periods. In: Modular forms and functions. Proc. Conf. Durham, 1983 · Zbl 0618.10019
[22] Lang, S.: Introduction to modular forms. Berlin, Heidelberg, New York: Springer 1976 · Zbl 0344.10011
[23] Maeda, Y.: A congruence between modular forms of half-integral weight. Hokkaido Math. J.12, 64-73 (1983) · Zbl 0521.10024
[24] Manin, Yu.I.: Periods of cusp forms andp-adic Hecke series. Mat. Sb.92, 376-401 (1973) · Zbl 0293.14007
[25] Manin, Yu.I.: The values ofp-adic Hecke series at integers in the critical strip. Mat. Sb.93, 621-626 (1973)
[26] Manin, Yu.I., Vishik, M.M.:p-adic Hecke series for imaginary quadratic fields. Mat. Sb.95, 357-383 (1974) · Zbl 0352.12013
[27] Mazur, B.: On the arithmetic of special values ofL-functions. Invent. Math.55, 207-240 (1979) · Zbl 0426.14009 · doi:10.1007/BF01406841
[28] Mazur, B., Swinnerton-Dyer, H.P.F.: Arithmetic of Weil curves. Invent. Math.25, 1-61 (1974) · Zbl 0281.14016 · doi:10.1007/BF01389997
[29] Niwa, S.: Modular forms of half-integral weight and the integral of certain theta functions. Nagoya Math. J.56, 147-161 (1974) · Zbl 0303.10027
[30] Ogg, A.: Elliptic curves and wild ramification. Am. J. Math.89, 1-21 (1967) · Zbl 0147.39803 · doi:10.2307/2373092
[31] Ogg, A.: Modular forms and Dirichlet series. New York: Benjamin 1969 · Zbl 0191.38101
[32] Ramanujan, S.: Collected Papers. Cambridge: Cambridge Univ. Press 1927 · JFM 53.0030.02
[33] Rubin, K.: Congruences for special values ofL-functions of elliptic curves with complex multiplication. Invent. Math.71, 339-364 (1983) · Zbl 0513.14012 · doi:10.1007/BF01389102
[34] Serre, J.-P.: Formes modulaires et fonctions zêtap-adiques. Modular functions of one variable. III. Lect. Notes Math. 350, 191-268. Berlin, Heidelberg, New York: Springer 1973
[35] Serre, J.-P., Stark, H.M.: Modular forms of weight 1/2. Modular functions of one variable. VI. Lect. Notes Math. 627, 28-67. Berlin, Heidelberg, New York: Springer 1977
[36] Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Princeton: Princeton Univ. Press 1971 · Zbl 0221.10029
[37] Shimura, G.: On modular forms of half-integral weight. Ann. Math.97, 440-481 (1973) · Zbl 0266.10022 · doi:10.2307/1970831
[38] Stephens, N.: Computations ofL(? D 2k?1 ,k). Handwritten notes and computer printout (1982)
[39] Stevens, G.: Arithmetic on modular curves. Boston: Birkhäuser 1982 · Zbl 0529.10028
[40] Tate, J.: Local constants. Algebraic number fields (L-functions and Galois properties). Proc. L.M.S. Symp. Durham Univ. 89-131. London, New York: Academic Press 1977
[41] Tunnell, J.: A classical Diophantine problem and modular forms of weight 3/2. Invent. Math.72, 323-334 (1983) · Zbl 0515.10013 · doi:10.1007/BF01389327
[42] Waldspurger, J.-L.: Sur les coefficients de Fourier des formes modulaires de poids demi-entier. J. Math. Pures. Appl.60, 375-484 (1981) · Zbl 0431.10015
[43] Weil, A.: Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen. Math. Ann.168, 149-156 (1967). (=Collected Papers, III, [1967a]) · Zbl 0158.08601 · doi:10.1007/BF01361551
[44] Wohlfahrt, K.: Über Operatoren Heckescher Art bei Modulformen reeller Dimension. Math. Nachr.16, 233-256 (1957) · Zbl 0080.06101 · doi:10.1002/mana.19570160307
[45] Zagier, D.: Nombres de classes et formes modulaires de poids 3/2. C.R. Acad. Sci. Paris281, 883-886 (1975) · Zbl 0323.10021
[46] Zagier, D.: On the values at negative integers of the zeta function of real quadratic fields. L’Enseign. Math.22, 55-95 (1976) · Zbl 0334.12021
[47] Zagier, D.: Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields. Modular functions of one variable. VI. Lect. Notes Math. 627, 105-169. Berlin, Heidelberg, New York: Springer 1977 · Zbl 0372.10017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.