×

Properties of uniformly summable multiplicative functions. (English) Zbl 0569.10024

Let, for any \(\alpha\geq 1\), \({\mathfrak L}_{\alpha}:=\{f: {\mathbb{N}}\to {\mathbb{C}}\), \(\| f\|_{\alpha}<\infty \}\) denote the vector space of arithmetical functions with bounded seminorm \[ \| f\|_{\alpha}:=\{ \limsup_{x\to \infty}(1/x)\sum_{n\leq x}| f(n)|^{\alpha}\}^{1/\alpha}, \] and let \({\mathfrak L}^*\) be the class of uniformly summable functions: \(f\in {\mathfrak L}^*\) in case \[ \lim_{K\to \infty}\sup_{x\geq 1}(1/x)\sum_{n\leq x, | f(n)| \geq K}| f(n)| =0. \] Obviously, if \(\alpha >1\), \({\mathfrak L}_{\alpha}\subsetneqq {\mathfrak L}^*\subsetneqq {\mathfrak L}_ 1.\)
In this paper the asymptotic behaviour, as \(x\to \infty\), of the sum \[ M(f,x,\alpha):=(1/x)\sum_{n\leq x}f(n) e^{2\pi in\alpha},\quad \alpha \in {\mathbb{R}}, \] for multiplicative functions \(f\in {\mathfrak L}^*\) is studied. For \(\alpha =0\) a complete description of the mean-behaviour of (1/x)\(\sum_{n\leq x}f(n)\) (x\(\to \infty)\) is obtained. This result generalizes a well-known theorem of G. Halász [Acta Math. Acad. Sci. Hung. 19, 365-403 (1968; Zbl 0165.058)] on multiplicative functions \(| f| \leq 1\). For irrational \(\alpha\) it is shown that \(\lim_{x\to \infty}M(f,x,\alpha)=0\) for all multiplicative functions \(f\in {\mathfrak L}^*\). As applications of this, characterizations of almost periodic and almost even (multiplicative) functions with non-empty spectrum and generalizations of results of W. Schwarz [J. Reine Angew. Math. 307/308, 418-423 (1979; Zbl 0397.10039)] on multiplicative functions \(f\in {\mathfrak L}_ 2\) are given.
(Remark. The results of this paper were announced by the author at the Oberwolfach-Conference on ”Analytische Zahlentheorie”, Nov. 2-Nov. 8, 1980).

MSC:

11N37 Asymptotic results on arithmetic functions
11N99 Multiplicative number theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] E. Cohen, A class of arithmetical functions,Proc. Nat. Acad. Sci. USA 41 (1955), 939–944.MR 17, 713 · Zbl 0066.29203 · doi:10.1073/pnas.41.11.939
[2] H. Daboussi, Sur les fonctions multiplicatives ayant une valeur moyenne non nulle,Bull. Soc. Math. France 109 (1981), 183–205.MR 82j: 10076 · Zbl 0461.10040
[3] H. Daboussi, Caractérisation des fonctions multiplicatives presque périodiquesB {\(\lambda\)} à spectre non vide,Ann. Inst. Fourier (Grenoble)30 (1980), 141–166.MR 82f: 10064 · Zbl 0446.10040
[4] H. Daboussi andH. Delange, Quelques propriétés des fonctions multiplicatives de module au plus égal à 1,C. R. Acad. Sci. Paris Sér. A 278 (1974), 657–660.MR 48: 11028 · Zbl 0292.10034
[5] H. Delange, Sur les fonctions arithmétiques multiplicatives,Ann. Sci. École Norm. Sup. 78 (1961), 273–304.MR 30: 72 · Zbl 0234.10043
[6] P. D. T. A. Elliott, A mean-value theorem for multiplicative functions,Proc. London Math. Soc. 31 (1975), 418–438.MR 52: 8063 · Zbl 0319.10055 · doi:10.1112/plms/s3-31.4.418
[7] P. D. T. A. Elliott, Mean-value theorems for multiplicative functions bounded in mean{\(\alpha\)}-power,{\(\alpha\)} > 1,J. Australian Math. Soc. Ser. A 29 (1980), 177–205.MR 81i: 10057 · Zbl 0426.10050 · doi:10.1017/S1446788700021182
[8] G. Halász, Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen,Acta Math. Acad. Sci. Hungar. 19 (1968), 365–403.MR 37: 6254 · Zbl 0165.05804 · doi:10.1007/BF01894515
[9] G. H. Hardy andE. M. Wright,An introduction to the theory of numbers, third edition, Oxford 1954.MR 16, 673 · Zbl 0058.03301
[10] E. Heppner andW. Schwarz, Benachbarte multiplikative Funktionen.
[11] K.-H. Indlekofer, A mean value-theorem for multiplicative functions,Math. Z. 172 (1980), 255–271.MR 82d: 10068 · Zbl 0426.10049 · doi:10.1007/BF01215089
[12] K.-H. Indlekofer, Remark on a theorem of G. Halász,Arch. Math. 36 (1980), 145–151.MR 83e: 10064 · Zbl 0448.10038 · doi:10.1007/BF01223682
[13] K.-H. Indlekofer, Limiting distributions and mean-values of multiplicative arithmetical functions,J. Reine Angew. Math. 328 (1981), 116–127.MR 83d: 10064 · Zbl 0455.10036 · doi:10.1515/crll.1981.328.116
[14] J. Knopfmacher, Fourier Analysis of arithmetical functions,Ann. Mat. Pura Appl. 109 (1976), 177–201.Zbl 337: 10033 · Zbl 0337.10033 · doi:10.1007/BF02416959
[15] H. L. Montgomery andR. C. Vaughan, Exponential sums with multiplicative coefficients,Inventiones Math. 43 (1977), 69–82.MR 56: 15579 · Zbl 0362.10036 · doi:10.1007/BF01390204
[16] W. Schwarz, Some applications of Elliott’s mean-value theorem.J. Reine Angew. Math. 307/308 (1979), 418–423.MR 80m: 10040 · Zbl 0397.10039 · doi:10.1515/crll.1979.307-308.418
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.