×

On the range of the Radon transform and its dual. (English) Zbl 0554.46016

The aim of the paper is to give an answer to the question: is a Radon transform a topological isomorphism on \({\mathcal D}\) and \({\mathcal E}'?\) It is proved that \(R:{\mathcal E}'({\mathbb{R}}^ n)\leftrightarrow {\mathcal E}'(S^{n- 1}\times {\mathbb{R}})\) is a topological isomorphism, but \(R:{\mathcal D}({\mathbb{R}}^ n)\to {\mathcal D}(S^{n-1}\times {\mathbb{R}})\) has no continuous inverse, the range of the Radon transform \(R({\mathcal D}({\mathbb{R}}^ n))\) is not topologically complemented in \({\mathcal D}(S^{n-1}\times {\mathbb{R}})\) and \(R({\mathcal D}({\mathbb{R}}^ n))\) is neither bornological nor barreled
Reviewer: Ju.V.Kostarčuk

MSC:

46F12 Integral transforms in distribution spaces
44A15 Special integral transforms (Legendre, Hilbert, etc.)

Keywords:

Radon transform
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Floret, K.: On well-located subspaces of distribution-spaces. Math. Ann.221, 147-151 (1976) · Zbl 0317.46004 · doi:10.1007/BF01433147
[2] Gelfand, I.M., Graev, M.I., Vilenkin, N.Ya.: Generalized functions. V. New York: Academic Press 1966
[3] Hahn, M., Quinto, E.T.: Distances between measures from 1-dimensional projections as implied by continuity of the inverse Radon transform. Preprint 1983 · Zbl 0555.28005
[4] Helgason, S.: The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds. Acta Math.113, 153-180 (1965) · Zbl 0163.16602 · doi:10.1007/BF02391776
[5] Helgason, S.: The Radon transform. Boston: Birkhäuser 1980 · Zbl 0453.43011
[6] Helgason, S.: Ranges of Radon transforms. Proc. Symp. Appl. Math.27, 63-70 (1982). Providence, RI: Amer. Math. Soc. 1983
[7] Hertle, A.: Continuity of the Radon transform and its inverse on Euclidean space. Math. Z.184, 165-192 (1983) · Zbl 0515.46038 · doi:10.1007/BF01252856
[8] Hörmander, L.: Linear partial differential operators. Berlin, Heidelberg, New York: Springer 1963 · Zbl 0108.09301
[9] Jarchow, H.: Locally convex spaces. Stuttgart: Teubner 1981 · Zbl 0466.46001
[10] Komatsu, H.: Ultradistributions. I. J. Fac. Sci. Univ. Tokyo, Sec. IA20, 25-105 (1973)
[11] Louis, A.K.: Orthogonal function series expansion and the null space of the Radon transform. SIAM J. Math. Anal. (1983)
[12] Louis, A.K.: Picture reconstruction from projections in restricted range. Math. Meth. Appl. Sci.2, 209-220 (1980) · Zbl 0457.65081 · doi:10.1002/mma.1670020207
[13] Ludwig, D.: The Radon transform on Euclidean space. Comm. Pure Appl. Math.19, 49-81 (1966) · Zbl 0134.11305 · doi:10.1002/cpa.3160190105
[14] Marr, R.B.: On the reconstruction of a function on a circular domain from a sampling of its line integrals. J. Math. Anal. Appl.45, 357-374 (1974) · Zbl 0282.65017 · doi:10.1016/0022-247X(74)90078-X
[15] Natterer, F.: Computerized tomography with unknown sources. SIAM J. Appl. Math.43, 1201-1212 (1983) · Zbl 0534.65088 · doi:10.1137/0143079
[16] Perry, R.M.: On reconstructing a function on the exterior of a disc from its Radon transform. J. Math. Appl.59, 324-341 (1977) · Zbl 0358.65107
[17] Pietsch, A.: Nukleare lokalkonvexe Räume. Berlin, Heidelberg, New York: Springer 1965 · Zbl 0152.32302
[18] Quinto, E.T.: Null spaces for the classical and spherical Radon transforms. J. Math. Anal. Appl.90, 408-420 (1982) · Zbl 0495.44003 · doi:10.1016/0022-247X(82)90069-5
[19] Quinto, E.T.: Singular value decomposition and inversion methods for the exterior Radon transform and a spherical transform. To appear J. Math. Anal. Appl. (1983) · Zbl 0569.44005
[20] Schaefer, H.H.: Topological vector spaces. Berlin, Heidelberg, New York: Springer 1971 · Zbl 0212.14001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.