×

Spectral methods for exterior elliptic problems. (English) Zbl 0548.65082

This paper deals with spectral approximations for exterior elliptic problems in two dimensions. As in the conventional finite difference or finite element methods, it is found that the accuracy of the numerical solutions is limited by the order of the farfield conditions. We introduce a spectral boundary treatment at infinity, which is compatible with the ”infinite order” interior spectral scheme. Computational results are presented to demonstrate the spectral accuracy attainable. Although we deal with a simple Laplace problem throughout the paper, our analysis covers more complex and general cases.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Aziz, A.K., Dorr, M.R., Kellog, R.B.: A New Approximation Method for the Helmholtz Equation in an Exterior Domain. SIAM J. Numer. Anal.19, 899-908 (1982) · Zbl 0494.65067 · doi:10.1137/0719065
[2] Bayliss, A., Gunzburger, M.D., Turkel, E.: Boundary Conditions for the Numerical Solution of Elliptic Equations in Exterior Regions. SIAM J. Appl. Math.42, 430-451 (1982) · Zbl 0479.65056 · doi:10.1137/0142032
[3] Boyd, J.P.: The Optimization of Convergent for Chebyshev Polynomial Methods in Unbounded Domain. J. Comput. Phys.45, 43-79 (1982) · Zbl 0488.65035 · doi:10.1016/0021-9991(82)90102-4
[4] Canuto, C., Quarteroni, A.: Preconditioned Minimal Residual Methods for Chebyshev Spectral Calculations. ICASE Report 83-28 (1983) · Zbl 0615.65118
[5] Funaro, D.: Analysis of the Du-Fort Frankel Method for Differential Systems. (To appear on RAIRO Numer. Anal.) · Zbl 0578.65023
[6] Fix, G.J., Marin, S.P.: Variational Methods in Underwater Acoustic Problems. J. Comput. Phys.28, 253-270 (1978) · Zbl 0384.76048 · doi:10.1016/0021-9991(78)90037-2
[7] Goldstein, C.I.: The Finite Element Method with Non-uniform Mesh sizes Applied to the Exterior Helmholtz Problem. Numer. Math.38, 61-82 (1982) · Zbl 0458.65092 · doi:10.1007/BF01395809
[8] Gottlieb, D., Hussaini, M.Y., Voigt, R.G.: Proceeding of the Workshop on Spectral Methods. (Hampton, Virginia, August 1982)-SIAM (Philadelphia) (1984)
[9] Gottlieb, D., Lustman, L.: The Dufort-Frankel Chebyshev Method for Parabolic Initial Boundary Value Problems. Comput. Fluids, 107-120 (1983) · Zbl 0511.76003
[10] Gottlieb, D., Lustman, L.: The Spectrum of the Chebyshev Collocation Operator for the Heat-Equation. SIAM J. Numer. Anal.20, 909-921 (1983) · Zbl 0537.65085 · doi:10.1137/0720063
[11] Grosch, C.E., Orszag, S.A.: Numerical Solution of Problems in Unbounded Regions: Coordinate transforms. J. Comput. Phys.25, 273-295 (1977) · Zbl 0403.65050 · doi:10.1016/0021-9991(77)90102-4
[12] Greenspan, D., Werner, P.: A Numerical Method for the Exterior Dirichlet Problem for the Reduced Wave Equation. Arch. Ration. Mech. Anal.23, 288-316 (1966) · Zbl 0161.12701 · doi:10.1007/BF00281165
[13] Haldenwang, P., Labrosse, G., Abboudi, S., Deville, M.: Chebyshev 3-D Spectral and 2-D Pseudo Spectral Solvers for the Helmholtz Equation. J. Comput. Phys.55, 115-128 (1984) · Zbl 0544.65071 · doi:10.1016/0021-9991(84)90018-4
[14] Hsiao, G.C., MacCamy, R.C.: Solution of Boundary Value Problems by Integral Equations of the First Kind. SIAM Rev.15, 687-704 (1973) · Zbl 0265.45009 · doi:10.1137/1015093
[15] Kriegsmann, G.A., Morawetz, C.S.: Solving the Helmholtz Equation for Exterior Problems with Variable Index of Refraction I: SIAM J. Sci. Stat. Comput.1, 371-385 (1980) · Zbl 0469.65084 · doi:10.1137/0901026
[16] Marin, S.P.: A Finite Element Method for Problems Involving the Helmholtz Equation in Two-Dimensional Exterior Regions Ph. D. Thesis, Carnegie-Mellon University, Pittsburgh 1978
[17] MacCamy, R.C., Marin, S. P.: A Finite Element Method for Exterior Interface Problems. Int. J. Math. Math. Sci.3, 311-350 (1980) · Zbl 0429.65108 · doi:10.1155/S0161171280000233
[18] Morchoisne, Y.: Resolution of Navier-Stokes Equations by a Space-Time Spectral Method. Rech. Aerosp.5, 293-306 (1973) · Zbl 0418.76026
[19] Meijerink, J.A., Van der Vorst, H.A.: An Iterative Solution Method for Linear Systems of Which the Coefficient Matrix is a SymmetricM-Matrix. Math. Comput.31, 148-162 (1977) · Zbl 0349.65020
[20] Orszag, S.A.: Spectral Methods for Problems in Complex Geometries. J. Comput. Phys.37, 70-92 (1980) · Zbl 0476.65078 · doi:10.1016/0021-9991(80)90005-4
[21] Phillips, T.N., Zang, T.A., Hussaini, M.Y.: Preconditioners for the Spectral Multigrid Method. ICASE Report 83-48 (1983)
[22] Young, D.M., Jea, K.C.: Generalized Conjugate Gradient Accelleration of Nonsymmetrizable Iterative Methods. Linear Algebra Appl.34, 159-194 (1980) · Zbl 0463.65025 · doi:10.1016/0024-3795(80)90165-2
[23] Wong, Y.S.: Numerical Methods in Thermal Problems. (R.W. Lewis, K. Morgan, eds.), pp. 967-979, Swansea: Pineridge Press 1979
[24] Wong, Y.S., Hafez, M.M.: A Minimal Residual Method for Transonic Potential Flow. ICASE Report 82-15 (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.