×

A Harnack inequality for degenerate parabolic equations. (English) Zbl 0546.35035

The Harnack inequality for parabolic equations is shown to hold for positive weak solutions of equations of the form \((\partial /\partial x_ i)(a_{ij}(x,t)\partial u/\partial x_ j)=\partial u/\partial t\) which are degenerate in the following way: there are positive constants \(\lambda\),\(\Lambda\), and a non-negative function \(\omega\) on \(R^ n\) such that \[ \lambda\omega (x)|\xi |^ 2\leq a_{ij}(x,t)\xi_ i\xi_ j\leq\Lambda \omega (x)|\xi |^ 2 \] for almost every (x,t) and every \(\xi\). The function \(\omega\) is assumed to belong to a class of functions studied by B. Muckenhoupt [Trans. Am. Math. Soc. 165, 207-226 (1976; Zbl 0236.26016)]. The proof is based on a method used earlier by J. Moser [Commun. Pure Appl. Math. 24, 727-740 (1971; Zbl 0227.35016)].
Reviewer: N.A.Watson

MSC:

35K65 Degenerate parabolic equations
35B45 A priori estimates in context of PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Coifman R., Studia Math 51 pp 241– (1974)
[2] Chiarenza F., Degenerate parabolic equations and Harnack inequality · Zbl 0644.35049
[3] Fabes E., Comm.P.D.E 7 (1) (1982) · Zbl 0498.35042 · doi:10.1080/03605308208820218
[4] Kruzkov S.N., Soviet Mathematics 4 (1) pp 686– (1963)
[5] Kruzkov S.N., Soviet Math.Dokl 13 (3) (1972)
[6] Ladyzenskaja, O., Solonnikov, V. and Ural’ceva, N. 1968. ”Linear and quasilinear equations of parabolic type”. A.M.S.Providence.
[7] Moser J., Comm.Pure Appl.Math pp 577– (1961) · Zbl 0111.09302 · doi:10.1002/cpa.3160140329
[8] Moser J., Comm.Pure Appl.Math. pp 101– (1964) · Zbl 0149.06902 · doi:10.1002/cpa.3160170106
[9] Moser J., Comm.Pure Appl.Math pp 727– (1971) · Zbl 0227.35016 · doi:10.1002/cpa.3160240507
[10] Murthy M.K.V., Ann.Mat.Pura Appl 80 pp 1– (1968) · Zbl 0185.19201 · doi:10.1007/BF02413623
[11] Muckenhoupt B., Trans.A.M.S. 165 pp 207– (1972) · doi:10.1090/S0002-9947-1972-0293384-6
[12] Trudinger N., Ann.Sc.Norm.Sup.Pisa 27 pp 265– (1973)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.