×

A Hahn-Banach theorem for holomorphic mappings on localy convex spaces. (English) Zbl 0538.46033

A locally convex space E is called \(\epsilon\)-space if for each absolutely convex, closed 0-neighbourhood U in E there is an absolutely convex, closed 0-neighbourhood V, \(V\subset U\), such that the canonical mapping \(K_{UV}:\tilde E_ V\to \tilde E_ U\) is \(\infty\)-factorable, i.e. there exist an \(L_{\infty}(\mu)\)-space F and continuous linear mappings \(A:\tilde E_ V\to F\) and \(B:F\to \tilde E_ U\!''\) such that \(I_ U{\mathbb{O}}K_{UV}=B{\mathbb{O}}A\) where \(I_ U:\tilde E_ U\to \tilde E_ U\!''\) denotes the evaluation mapping. In this note it is shown that a locally convex space E is an \(\epsilon\)-space if and only if for every locally convex space F and every locally convex space G containing E as a topological linear subspace every holomorphic mapping \(f:E\to F\) of uniformly bounded type has a holomorphic extension \(\tilde f:G\to F_ n\!''\) where \(F_ n\!''\) denotes the bidual of F equipped with the natural topology. This theorem gives various counterexamples and generalizes a result of R. M. Aron and P. D. Berner [Bull. Soc. Math. France 106, 3-24 (1978; Zbl 0378.46043)] concerning holomorphic extensions in Banach spaces. Furthermore the extension theorem of P. J. Boland [Trans. Am. Math. Soc. 209, 275-281 (1975; Zbl 0317.46036)] can be improved for not necessarily nuclear spaces E in the following way: If E is an \(\epsilon\)-(DFS)-space, then every Fréchet-valued holomorphic function on E can be holomorphically extended to each locally convex space \(G\supset E\).

MSC:

46G20 Infinite-dimensional holomorphy
46A04 Locally convex Fréchet spaces and (DF)-spaces
46A22 Theorems of Hahn-Banach type; extension and lifting of functionals and operators
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Aron, R.M., Berner, P.D.: A Hahn-Banach extension theorem for analytic mappings. Bull. Soc. Math. France106, 3-24 (1978) · Zbl 0378.46043
[2] Bierstedt, K.-D., Meise, R., Summers, W.H.: Köthe sets and Köthe sequence spaces, p. 27-91 in ?Functional Analysis, Holomorphy and Approximation Theory?, J.A. Barroso (Ed.), North Holland Mathematics Studies71 (1982) · Zbl 0504.46007
[3] Boland, P.J.: Holomorphic functions on nuclear spaces, Transact. AMS209, 275-281 (1975) · Zbl 0317.46036
[4] Colombeau, J.F., Perrot, B.: Transformation de Fourier-Borel et réflexivité dans les espaces d’applications Silva analytiques à valeurs vectorielles; applications, C.R.A.Sc. Paris,285, 19-21 (1977) · Zbl 0357.46051
[5] Colombeau, J.F., Mujica, J.: Holomorphic and differentiable mappings of uniform bounded type, p. 179-200 in ?Functional Analysis, Holomorphy and Approximation Theory?, J.A. Barroso (Ed.), North Holland Mathematics Studies71 (1982)
[6] Dineen, S.: Complex analysis in locally convex spaces. North Holland Mathematics Studies57 (1981) · Zbl 0484.46044
[7] Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc.16 (1966)
[8] Grothendieck, A.: Résumé de la théorie métrique des produits tensoriels topologiques. Bol. Soc. Math. São Paulo8, 1-79 (1956)
[9] Harksen, J.: Charakterisierung lokalkonvexer Räume mit Hilfe von Tensornormtopologien. Math. Nachr.106, 347-374 (1982) · Zbl 0507.46056
[10] Hollstein, R.: Inductive limits and ?-tensor products. J. reine angew. Math.319, 38-62 (1980) · Zbl 0426.46053
[11] Hollstein, R.: Extension and lifting of continuous linear mappings in locally convex spaces. Math. Nachr.108, 275-297 (1982) · Zbl 0523.46004
[12] Hollstein, R.: Locally convex ?-tensor products and ?-spaces. To appear in Math. Nachr.117 (1984)
[13] Köthe, G.: Topological vector spaces II Berlin-Heidelberg-New York: Springer 1979
[14] Lindenstrauss, J., Pe?czy?ski, A.: Absolutely summing operators in ?p-spaces and their applications. Studia Math.29, 275-326 (1968) · Zbl 0183.40501
[15] Meise, R., Vogt, D.: Extension of entire functions on nuclear locally convex spaces. To appear in Proc. AMS · Zbl 0561.46024
[16] Meise, R., Vogt, D.: Counterexamples in holomorphic functions on nuclear Fréchet spaces. Math. Z.182, 167-177 (1983) · Zbl 0509.46041
[17] Pietsch, A.: Operator ideals. Berlin: Deutscher Verl. d. Wiss. (1978) · Zbl 0399.47039
[18] Saphar, P.: Produits tensoriels d’espaces de Banach et classes d’applications linéaires, Studia Math.38, 71-100 (1970) · Zbl 0213.14201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.