×

On the Dirichlet problem for a semi-linear elliptic equation with \(L^ 2\)-boundary data. (English) Zbl 0538.35036

The aim of this paper is to investigate the existence of a solution of the Dirichlet problem for a semilinear equation of elliptic type \[ -\sum^{n}_{i,j=1}D_ i(a_{ij}(x)D_ ju)=f(x,u,Du)\quad in\quad Q;\quad u(x)=\phi(x)\quad on\quad \partial Q, \] where \(\phi \in L^ 2(\partial Q)\) and is not, in general, a trace of a function belonging to \(W^{1,2}(Q)\). Here Q denotes a bounded region in \(R_ n\) with \(\partial Q\subset C^ 2\). The boundary condition is understood in the sense of \(L^ 2\)-convergence, i.e., \[ \lim_{\sigma \to 0}\int_{\partial Q}[u(x_{\delta}(x))-\phi(x)]^ 2dS_ x=0, \] where a \(C^ 1\)-mapping \(x_{\delta}:\partial Q\to \partial Q_{\delta}\) is defined by the formula \(x_{\delta}(x)=x-\delta \nu(x),\quad | x_{\delta}(x)-x| =\delta,\) where \(\nu\) (x) is the outward normal to \(\partial Q\) at x and \(Q_{\delta}=Q\cap \{\min_{y\in \partial Q}| x-y|>\delta \}.\) Under various assumptions on a nonlinearity f the existence of a solution is established in the space \(\tilde W^{1,2}(Q)=\{u:\quad u\in L^ 2(Q),\quad Du\in L^ 2_{loc}(Q)\) and \[ \int_{Q}| Du(x)|^ 2r(x)dx+\sup_{0<\delta \leq d}\int_{\partial Q_{\delta}}u(x)^ 2dS_ x<\infty \}, \] where \(r(x)=dist(x,\partial Q)\).

MSC:

35J65 Nonlinear boundary value problems for linear elliptic equations
35D05 Existence of generalized solutions of PDE (MSC2000)
35J25 Boundary value problems for second-order elliptic equations
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Chabrowski, J., Thompson, B.: On traces of solutions of a semi-linear partial differential equation of elliptic type. Ann. Polon. Math.62, 47-73 (1982)
[2] Chabrowski, J., Thompson, B.: On the boundary values of the solutions of linear elliptic equations. Bull. Austral. Math. Soc.27, 1-30 (1983) · Zbl 0518.35031 · doi:10.1017/S0004972700011461
[3] Chabrowski, J.: Note on the Dirichlet problem withL 2-boundary data. Manuscripta Math.40, 91-108 (1982) · Zbl 0503.35036 · doi:10.1007/BF01168238
[4] De Figueiredo, D.G.: The Dirichlet problem for nonlinear elliptic equations; Hilbert space approach, Lecture Notes in Mathematics446, pp. 144-165. Berlin-Heidelberg-New York: Springer 1975
[5] De Figueiredo, D.G.: Semilinear elliptic problems with nonlinearities near the first eigenvalue, Proc. Univ. Florida International Symposium (A.R. Bednarek and L. Cesari, Eds.) pp. 59-71. New York: Academic Press 1977 · Zbl 0538.34013
[6] De Figueiredo, D.G., Gossez, J.P.: Nonlinear perturbations of a linear elliptic problem near its first eigenvalue. J. Differential Equations30, 1-19 (1978) · Zbl 0383.35020 · doi:10.1016/0022-0396(78)90019-0
[7] Hess, P.: On the solvability of nonlinear elliptic boundary value problems. Indiana Univ. Math. J.25, 461-466 (1976) · Zbl 0329.35029 · doi:10.1512/iumj.1976.25.25036
[8] Hess, P.: On a Theorem by Landesman and Lezar, Indiana Univ. Math. J.23, 827-829 (1974) · Zbl 0272.35036 · doi:10.1512/iumj.1974.23.23068
[9] Kufner, A., John, O., Fu?ik, S.: Function spaces. Leyden, Noordhoff; Prague: Academic 1977
[10] Landesman, E.M., Lazer, A.C.: Nonlinear perturbations of linear elliptic boundary value problems at resonance. J. Math. Mech.19, 609-623 (1970) · Zbl 0193.39203
[11] Lions, J.L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Paris: Dunod, Gauthier-Villars 1969
[12] Meyer, R.D.: Some embedding theorems for generalized Sobolev spaces and applications to degenerate elliptic differential operators. J. Math. Mech.16, 739-760 (1967) · Zbl 0149.09303
[13] Morrey, Ch.B., Jr.: Multiplie integrals in the calculus of variations. Berlin-Heidelberg-New York: Springer 1966
[14] Mikhailov, V.P.: On the boundary values of the solutions of elliptic equations. Appl. Math. Optim.6, 193-199 (1980) · Zbl 0452.35040 · doi:10.1007/BF01442894
[15] Mikhailov, V.P.: Boundary values of the solutions of elliptic equations in domains with a smooth boundary. Mat. Sb.101 (143) 163-188 (1976)
[16] Mikhailov, Yu.A.: Solvability of the Dirichlet problem in the spaceH loc 1 for second order elliptic equations (Russian) Differential equations and operator theory, Mat. Isslet. Akademija Nauk Moldavskoî SSR,67, 109-123 (1982)
[17] Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations. Berlin-Heidelberg-New York: Springer 1977 · Zbl 0361.35003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.