×

Finite-difference schemes for reaction-diffusion equations modeling predator-prey interactions in MATLAB. (English) Zbl 1298.92081

Summary: We present two finite-difference algorithms for studying the dynamics of spatially extended predator-prey interactions with the Holling type II functional response and logistic growth of the prey. The algorithms are stable and convergent provided the time step is below a (non-restrictive) critical value. This is advantageous as it is well-known that the dynamics of approximations of differential equations (DEs) can differ significantly from that of the underlying DEs themselves. This is particularly important for the spatially extended systems that are studied in this paper as they display a wide spectrum of ecologically relevant behavior, including chaos. Furthermore, there are implementational advantages of the methods. For example, due to the structure of the resulting linear systems, standard direct, and iterative solvers are guaranteed to converge. We also present the results of numerical experiments in one and two space dimensions and illustrate the simplicity of the numerical methods with short programs MATLAB. Users can download, edit, and run the codes from http://www.uoguelph.ca/mgarvie/, to investigate the key dynamical properties of spatially extended predator-prey interactions.

MSC:

92D25 Population dynamics (general)
35K57 Reaction-diffusion equations
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs

Software:

Matlab; PRED_PREY
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alonso, D., Bartumeus, F., Catalan, J., 2002. Mutual interference between predators can give rise to Turing spatial patterns. Ecology 83(1), 28–34. · doi:10.1890/0012-9658(2002)083[0028:MIBPCG]2.0.CO;2
[2] Ascher, U., Ruuth, S., Wetton, B., 1995. Implicit–explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32(3), 797–823. · Zbl 0841.65081 · doi:10.1137/0732037
[3] Beckett, G., Mackenzie, J., 2001. On a uniformly accurate finite difference approximation of a singularly perturbed reaction–diffusion problem using grid equidistribution. J. Comput. Appl. Math. 131, 381–405. · Zbl 0984.65076 · doi:10.1016/S0377-0427(00)00260-0
[4] Brenner, S., Scott, L., 1994. The Mathematical Theory of Finite Element Methods. Vol. 15: Texts in Applied Mathematics. Springer, New York. · Zbl 0804.65101
[5] Ciarlet, P., 1979. The Finite Element Method for Elliptic Problems. Vol. 4: Studies in Mathematics and its Applications. North-Holland, Amsterdam.
[6] Elliott, C., Stuart, A., 1993. The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30(6), 1622–1663. · Zbl 0792.65066 · doi:10.1137/0730084
[7] Freedman, H., 1980. Deterministic Mathematical Models in Population Ecology. Vol. 57: Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, New York. · Zbl 0448.92023
[8] Garvie, M., Trenchea, C., 2005a. Analysis of two generic spatially extended predator–prey models. Nonlinear Anal. Real World Appl., submitted for publication. · Zbl 1132.65092
[9] Garvie, M., Trenchea, C., 2005b. Finite element approximation of spatially extended predator–prey interactions with the Holling type II functional response. Numer. Math., submitted for publication. · Zbl 1132.65092
[10] Gentleman, W., Leising, A., Frost, B., Strom, S., Murray, J., 2003. Functional responses for zooplankton feeding on multiple resources: A review of assumptions and biological dynamics. Deep Sea Res. II 50, 2847–2875. · doi:10.1016/j.dsr2.2003.07.001
[11] Gurney, W., Veitch, A., Cruickshank, I., McGeachin, G., 1998. Circles and spirals: Population persistence in a spatially explicit predator–prey model. Ecology 79(7), 2516–2530.
[12] Hildebrand, F., 1968. Finite-Difference Equations and Simulations. Prentice-Hall, Englewood Cliffs, NJ. · Zbl 0157.22702
[13] Hoff, D., 1978. Stability and convergence of finite difference methods for systems of nonlinear reaction–diffusion equations. SIAM J. Numer. Anal. 15(6), 1161–1177. · Zbl 0411.76062 · doi:10.1137/0715077
[14] Holling, C., 1959. Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385–398. · doi:10.4039/Ent91385-7
[15] Holling, C., 1965. The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. 45, 1–60.
[16] Holmes, E., Lewis, M., Banks, J., Veit, R., 1994. Partial differential equations in ecology: Spatial interactions and population dynamics. Ecology 75(1), 17–29. · doi:10.2307/1939378
[17] Isaacson, E., Keller, H., 1966. Analysis of Numerical Methods. Wiley, New York. · Zbl 0168.13101
[18] Ivlev, V., 1961. Experimental Ecology of the Feeding Fishes. Yale University Press, New Haven.
[19] Jerome, J., 1984. Fully discrete stability and invariant rectangular regions for reaction–diffusion systems. SIAM J. Numer. Anal. 21(6), 1054–1065. · Zbl 0587.65063 · doi:10.1137/0721065
[20] Jeschke, J., Kopp, M., Tollrian, R., 2002. Predator functional responses: Discriminating between handling and digesting prey. Ecol. Monogr. 72(1), 95–112. · doi:10.1890/0012-9615(2002)072[0095:PFRDBH]2.0.CO;2
[21] Li, N., Steiner, J., Tang, S.-M., 1994. Convergence and stability analysis of an explicit finite difference method for 2-dimensional reaction–diffusion equations. J. Aust. Math. Soc. Ser. B 36(2), 234–241. · Zbl 0827.65088 · doi:10.1017/S0334270000010377
[22] Malchow, H., Petrovskii, S., 2002. Dynamical stabilization of an unstable equilibrium in chemical and biological systems. Math. Comput. Model. 36, 307–319. · Zbl 1021.92026 · doi:10.1016/S0895-7177(02)00127-9
[23] May, R., 1974. Stability and Complexity in Model Ecosystems. Princeton University Press, New Jersey.
[24] Medvinsky, A., Petrovskii, S., Tikhonova, I., Malchow, H., Li, B.-L., 2002. Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev. 44(3), 311–370. · Zbl 1001.92050 · doi:10.1137/S0036144502404442
[25] Mickens, R., 2003. A nonstandard finite difference scheme for a Fisher PDE having nonlinear diffusion. Comput. Math. Appl. 45, 429–436. · Zbl 1036.65071 · doi:10.1016/S0898-1221(03)80028-7
[26] Morton, K., Mayers, D., 1996. Numerical Solution of Partial Differential Equations. Cambridge University Press, Cambridge. · Zbl 0811.65063
[27] Murray, J., 1993. Mathematical Biology. Vol. 19: Biomathematics Texts. Springer, Berlin. · Zbl 0779.92001
[28] Neubert, M., Caswell, H., Murray, J., 2002. Transient dynamics and pattern formation: Reactivity is necessary for Turing instabilities. Math. Biosci. 175, 1–11. · Zbl 0988.92002 · doi:10.1016/S0025-5564(01)00087-6
[29] Pao, C., 1998. Accelerated monotone iterative methods for finite difference equations of reaction–diffusion. Numer. Math. 79, 261–281. · Zbl 0911.65075 · doi:10.1007/s002110050340
[30] Pao, C., 1999. Numerical analysis of coupled systems of nonlinear parabolic equations. SIAM J. Numer. Anal. 36(2), 393–416. · Zbl 0921.65061 · doi:10.1137/S0036142996313166
[31] Pao, C., 2002. Finite difference reaction–diffusion systems with coupled boundary conditions and time delays. J. Math. Anal. 272, 407–434. · Zbl 1014.65074 · doi:10.1016/S0022-247X(02)00145-2
[32] Pascual, M., 1993. Diffusion-induced chaos in a spatial predator–prey system. Proc. R. Soc. Lond. Ser. B 251, 1–7. · doi:10.1098/rspb.1993.0001
[33] Petrovskii, S., Malchow, H., 1999. A minimal model of pattern formation in a prey–predator system. Math. Comput. Model. 29, 49–63. · Zbl 0990.92040 · doi:10.1016/S0895-7177(99)00070-9
[34] Petrovskii, S., Malchow, H., 2001. Wave of chaos: New mechanism of pattern formation in spatio-temporal population dynamics. Theor. Populat. Biol. 59, 157–174. · Zbl 1035.92046 · doi:10.1006/tpbi.2000.1509
[35] Petrovskii, S., Malchow, H., 2002. Critical phenomena in plankton communities: KISS model revisited. Nonlinear Anal. Real 1, 37–51. · Zbl 0996.92037 · doi:10.1016/S0362-546X(99)00392-2
[36] Pujol, M., Grimalt, P., 2002. A non-linear model for cerebral diffusion: Stability of finite differences method and resolution using the Adomian method. Int. J. Numer. Method H 13(4), 473–485. · Zbl 1033.92006 · doi:10.1108/09615530310475911
[37] Rai, V., Jayaraman, G., 2003. Is diffusion-induced chaos robust? Curr. Sci. India 84(7), 925–929.
[38] Richtmyer, R., Morton, K., 1967. Difference Methods for Initial Value Problems. Vol. 4: Interscience Tracts in Pure and Applied Mathematics. Wiley-Interscience, New York. · Zbl 0155.47502
[39] Rosenzweig, M., MacArthur, R., 1963. Graphical representation and stability conditions for predator–prey interaction. Am. Nat. 97, 209–223. · doi:10.1086/282272
[40] Ruuth, J., 1995. Implicit–explicit methods for reaction–diffusion problems in pattern formation. J. Math. Biol. 34, 148–176. · Zbl 0835.92006 · doi:10.1007/BF00178771
[41] Saad, Y., 2003. Iterative methods for sparse linear systems. SIAM. · Zbl 1031.65046
[42] Saad, Y., Schultz, M., 1986. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869. · Zbl 0599.65018 · doi:10.1137/0907058
[43] Savill, N., Hogeweg, P., 1999. Competition and dispersal in predator–prey waves. Theor. Populat. Biol. 56, 243–263. · Zbl 0965.92029 · doi:10.1006/tpbi.1999.1431
[44] Segel, L., Jackson, J., 1972. Dissipative structure: An explanation and an ecological example. J. Theor. Biol. 37, 545–559. · doi:10.1016/0022-5193(72)90090-2
[45] Sherratt, J., 2001. Periodic travelling waves in cyclic predator–prey systems. Ecol. Lett. 4, 30–37. · doi:10.1046/j.1461-0248.2001.00193.x
[46] Sherratt, J., Eagan, B., Lewis, M., 1997. Oscillations and chaos behind predator–prey invasion: Mathematical artifact or ecological reality? Phil. Trans. R. Soc. Lond. B 352, 21–38. · doi:10.1098/rstb.1997.0003
[47] Sherratt, J., Lambin, X., Thomas, C., Sherratt, T., 2002. Generation of periodic waves by landscape features in cyclic predator–prey systems. Proc. R. Soc. Lond. Ser. B 269, 327–334. · doi:10.1098/rspb.2001.1890
[48] Sherratt, J., Lewis, M., Fowler, A., 1995. Ecological chaos in the wake of invasion. Proc. Natl. Acad. Sci. U.S.A. 92, 2524–2528. · Zbl 0819.92024 · doi:10.1073/pnas.92.7.2524
[49] Skalski, G., Gilliam, J.F., 2001. Functional responses with predator interference: Viable alternatives to the Holling type II model. Ecology 82(11), 3083–3092. · doi:10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2
[50] Smoller, J., 1983. Shock Waves and Reaction–Diffusion Equations. Vol. 258: Grundlehren der mathematischen Wissenschaften. Springer-Verlag, New York. · Zbl 0508.35002
[51] Stuart, A., 1989. Nonlinear instability in dissipative finite difference schemes. SIAM Rev. 31(2), 191–220. · Zbl 0675.65099 · doi:10.1137/1031048
[52] Stuart, A., Humphries, A., 1998. Dynamical Systems and Numerical Analysis. Vol. 2: Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge. · Zbl 0913.65068
[53] Turing, A., 1952. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37–72. · Zbl 1403.92034 · doi:10.1098/rstb.1952.0012
[54] Yee, H., Sweby, P., 1994. Global asymptotic behavior of iterative implicit schemes. Int. J. Bifurcat. Chaos 4(6), 1579–1611. · Zbl 0872.65078 · doi:10.1142/S0218127494001210
[55] Yee, H., Sweby, P., 1995. Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations II. Global asymptotic behaviour of time discretizations. Comp. Fluid Dyn. 4, 219–283. · doi:10.1080/10618569508904525
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.