×

On the resolution of cusp singularities and the Shintani decomposition in totally real cubic number fields. (English) Zbl 0403.14005

Let \(K\) be a totally real number field of degree \(n\) and \(K\hookrightarrow \mathbb R^n\) the usual embedding. Let \(M\) be a lattice of rank \(n\) in \(K\) and \(V\) a subgroup of maximal rank \((n-1)\) of the group of those totally positive units which stabilize \(M\). Pairs \((M,V)\) describe cusps of the Hilbert modular variety associated to \(K\). In a beautiful series of papers, Hirzebruch has shown how to use the number theory of \(K\) to resolve these cusps when \(n=2\).
This papers gives completely explicit resolutions of these cusps for two infinite families of cubics. More generally, for any cubic it gives a fundamental domain, \(D\), for the action of \(V\) on \(\mathbb R^n_+\) such that \(D\) is a finite union of open simplicial cones with vertices in \(M\). Following M. Shintani [J. Fac. Sci., Univ. Tokyo, Sect. I A 23, 393–417 (1976; Zbl 0349.12007)], this can be used to calculate, as a finite sum, the values at nonnegative integers of a certain zeta function attached to \(M\). The methods used are geometric with a mild use of algebraic topology.
Reviewer: E. Thomas

MSC:

11F41 Automorphic forms on \(\mbox{GL}(2)\); Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms; Hilbert modular surfaces
14J17 Singularities of surfaces or higher-dimensional varieties
14J25 Special surfaces
14J30 \(3\)-folds
11R80 Totally real fields
11R16 Cubic and quartic extensions
14G25 Global ground fields in algebraic geometry

Citations:

Zbl 0349.12007
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Ash, A., Mumford, D., Rapoport, M., Tai, Y.: Smooth compactifications of locally symmetric varieties. Brookline, Mass.: Mathematical Sciences Press 1975 · Zbl 0334.14007
[2] Berwick, W.H.H.: Algebraic number fields with two independent units, Proc. London Math. Soc. (2)34, 360-78 (1932) · Zbl 0005.34203 · doi:10.1112/plms/s2-34.1.360
[3] Cohn, H.: Formal ring of a cubíc solid angle. J. Number Theory10, 135-50 (1978) · Zbl 0382.10022 · doi:10.1016/0022-314X(78)90032-X
[4] Delone, B.N., Faddeev, D.K.: The theory of irrationalities of the third degree. Translations of Mathematical Monographs, Vol. 10. Providence, R.I.: American Mathematical Society 1964 · Zbl 0133.30202
[5] Ehlers, F.: Eine Klasse komplexer Mannigfaltigkeiten und die Auflösung einiger isolierter Singularitäten. Math. Ann.218, 127-56 (1975) · Zbl 0309.14012 · doi:10.1007/BF01370816
[6] Fujiki, A.: On resolutions of cyclic quotient singularities. Publ. RIMS, Kyoto Univ.10, 293-328 (1974) · Zbl 0313.32012 · doi:10.2977/prims/1195192183
[7] Hasse, H.: Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen kubischen und biquadratischen Zahlkörpern. Math. Abh.3, 289-379 (1975)
[8] Hirzebruch, F.: The Hilbert modular group, resolution of the singularities at the cusps and related problems. Sem. Bourbaki no. 396 1970/71
[9] Hirzebruch, F.: Hilbert Modular surfaces. L’Enseignement Math.19, 183-281 (1974) · Zbl 0285.14007
[10] Nagell, T.: Zur Arithmetik der Polynome. Abh. Math. Sem. Univ. Hamburg1, 179-194 (1922) · JFM 48.0132.04
[11] Nakamula, K.: On a fundamental domain forR + 3 . J. Fac. Sci. University of Tokyo, Sect. 1A, Vol. 24 701-13 (1977) · Zbl 0405.12005
[12] Satake, I.: On the arithmetic of tube domains. Bull. Am. Math. Soc.79, 1076-94 (1973) · Zbl 0332.32023 · doi:10.1090/S0002-9904-1973-13342-7
[13] Satake, I.: On the blowing-ups of Hilbert modular surfaces. J. Fac. Sci. University of Tokyo, Sect. 1A24, 221-9 (1977) · Zbl 0367.32005
[14] Shintani, T.: On evaluation of zeta functions of totally real algebraic number fields at non-positive integers. J. Fac. Sci. University of Tokyo, Sect. 1A23, 393-417 (1976) · Zbl 0349.12007
[15] Stender, H.J.: Einheiten für eine allgemeine Klasse total reeller algebraischer Zahlkörper. J. Reine Angew. Math.257, 151-78 (1972) · Zbl 0247.12008 · doi:10.1515/crll.1972.257.151
[16] Thomas, E.: Fundamental units for orders in certain cubic number fields. J. Reine Angew. Math.310, 33-55 (1979) · Zbl 0427.12005
[17] Zagier, D.: A Kronecker limit formula for real quadratic fields. Math. Ann.213, 153-184 (1975) · Zbl 0289.12012 · doi:10.1007/BF01343950
[18] Zagier, D.: Valeurs des fonctions zeta des corps quadratiques reel aux entiers negatifs. Asterisque, no. 41-42, Soc. Math. de France, 1977
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.