×

A-stable one-step methods with step-size control for stiff systems of ordinary differential equations. (English) Zbl 0386.65035


MSC:

65L07 Numerical investigation of stability of solutions to ordinary differential equations
65L05 Numerical methods for initial value problems involving ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alt, R., (Thesis (1971), 3rd Cycle: 3rd Cycle Paris)
[2] Axelsson, O., A class of A-stable Methods, BIT, 185-199 (1969) · Zbl 0208.41504
[3] Brezinski, C., Some results in the theory of the vector ϵ-Algorithm, Linear Algebra, 8, 77-86 (1974) · Zbl 0273.65026
[4] Butcher, J. C., Implicit Runge-Kutta processes, Math. Comp., Vol. 18, 50-64 (1964) · Zbl 0123.11701
[5] Ceschino, F.; Kuntzmann, J., Problèmes différentiels de conditions initiales (1963), Dunod: Dunod Paris · Zbl 0126.12504
[6] Crouzeix, M., doctoral thesis, 39-54 (1975), Paris
[7] Dahlquist, G., A special stability problem for linear multistep methods, BIT3, 27-43 (1963) · Zbl 0123.11703
[8] Ehle, B. L., High order A-stable methods for the numerical solution of systems of differential equations, BIT8, 276-278 (1968) · Zbl 0176.14604
[9] Enright, W. H., Second derivativ multistep methods for stiff ordinary differential equations, SIAM j. on Num An., vol. 11, No 2, 321-331 (1974) · Zbl 0249.65055
[10] FEHLBERG, E. : “Classical 5th, 6th, 7th, 8th order Runge-Kutta formulas with step-size control”, NASA T.R. 287.; FEHLBERG, E. : “Classical 5th, 6th, 7th, 8th order Runge-Kutta formulas with step-size control”, NASA T.R. 287. · Zbl 0137.33105
[11] Gear, C. W., The automatic integration of stiff ordinary differential equations, (Proc. IFIP (1968)), 81-85 · Zbl 0195.45702
[12] Gear, C. W., Numerical initial value problem in ordinary differential equations (1971), Prentice Hall: Prentice Hall Englewood Cliffs, N.Y. · Zbl 0217.21701
[13] Hames, C. F., Implicit integration processes with error estimate for the numerical solution of D.E., Computer Journal, Vol. 12, 183-187 (1969) · Zbl 0185.41203
[14] Hemon, C.; Vignes, J., Détermination des paramètres optimaux dans les formules de Runge-Kutta. Comparaison et discussion des méthodes numériques de résolutions des équations différentielles, Rapport IFP réf. 12848 (Jan. 1966)
[15] Henrici, P., Discrete variable methods in ordinary differential equations (1962), J. Wiley and Sons Inc.: J. Wiley and Sons Inc. New York · Zbl 0112.34901
[16] Lemarechal, C., Sur la stabilité absolue des schémas de Runge-Kutta, ((1971)), 397-398, Paris · Zbl 0212.48502
[17] Makela, M.; Nevanlinna, O.; Sipila, A. H., Exponentially fitted multistep method by generalized Hermite Birkhoff interpolation, BIT 14, 437-451 (1974) · Zbl 0278.65079
[18] Sloate, H. M.; Bickart, T. A., A-stable composite multistep methods, Journal of A. C. M., vol. 20, No 9, 7-26 (1973) · Zbl 0263.65078
[19] Norsett, S. P., Semi explicit Runge-Kutta methods, Math. Comp., Vol. 6 (1976)
[20] Tanaka, Masatsugu, On Runge-Kutta type formulas with error estimating stability, Information Processing in Japan, Vol. 9, 9-15 (1969) · Zbl 0284.65058
[21] Watts, H. A.; Shampine, L. F., A-stable block implicit one-step methods, BIT 12, 252-266 (1972) · Zbl 0253.65045
[22] Wynn, P., Acceleration techniques for iterated vector and matrix problems, Math. Comp., Vol. 16, No 79, 301-322 (1962) · Zbl 0105.10302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.