×

On the elliptic problems involving multisingular inverse square potentials and concave-convex nonlinearities. (English) Zbl 1220.35061

Summary: A semilinear elliptic problem (\(E_{\lambda}\)) with concave-convex nonlinearities and multiple Hardy-type terms is considered. By means of a variational method, we establish the existence and multiplicity of positive solutions for problem (\(E_{\lambda}\)).

MSC:

35J61 Semilinear elliptic equations
35A15 Variational methods applied to PDEs
35B09 Positive solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] F. Catrina and Z.-Q. Wang, “On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions,” Communications on Pure and Applied Mathematics, vol. 54, no. 2, pp. 229-258, 2001. · Zbl 1072.35506 · doi:10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I
[2] K. S. Chou and C. W. Chu, “On the best constant for a weighted Sobolev-Hardy inequality,” Journal of the London Mathematical Society, vol. 48, no. 1, pp. 137-151, 1993. · Zbl 0739.26013 · doi:10.1112/jlms/s2-48.1.137
[3] A. Ambrosetti, J. Garcia-Azorero, and I. Peral, “Multiplicity results for some nonlinear elliptic equations,” Journal of Functional Analysis, vol. 137, no. 1, pp. 219-242, 1996. · Zbl 0852.35045 · doi:10.1006/jfan.1996.0045
[4] M. Bouchekif and A. Matallah, “Multiple positive solutions for elliptic equations involving a concave term and critical Sobolev-Hardy exponent,” Applied Mathematics Letters, vol. 22, no. 2, pp. 268-275, 2009. · Zbl 1163.35368 · doi:10.1016/j.aml.2008.03.024
[5] J. Chen, “Multiple positive solutions for a class of nonlinear elliptic equations,” Journal of Mathematical Analysis and Applications, vol. 295, no. 2, pp. 341-354, 2004. · Zbl 1081.35030 · doi:10.1016/j.jmaa.2004.01.037
[6] T.-S. Hsu and H.-L. Lin, “Multiple positive solutions for singular elliptic equations with concave-convex nonlinearities and sign-changing weights,” Boundary Value Problems, vol. 2009, Article ID 584203, 17 pages, 2009. · Zbl 1171.35383 · doi:10.1155/2009/584203
[7] T.-S. Hsu and H.-L. Lin, “Multiple positive solutions for singular elliptic equations with weighted Hardy terms and critical Sobolev-Hardy exponents,” Proceedings of the Royal Society of Edinburgh. Section A, vol. 140, no. 3, pp. 617-633, 2010. · Zbl 1193.35079 · doi:10.1017/S0308210509000729
[8] D. Cao and P. Han, “Solutions to critical elliptic equations with multi-singular inverse square potentials,” Journal of Differential Equations, vol. 224, no. 2, pp. 332-372, 2006. · Zbl 1198.35086 · doi:10.1016/j.jde.2005.07.010
[9] V. Felli and S. Terracini, “Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity,” Communications in Partial Differential Equations, vol. 31, no. 1-3, pp. 469-495, 2006. · Zbl 1206.35104 · doi:10.1080/03605300500394439
[10] T. S. Hsu, “Multiple positive solutions for semilinear elliptic equations involving multi-singular inverse square potentials and concave-convex nonlinearities,” Nonlinear Analysis: Theory, Methods & Applications, In press. · Zbl 1217.35071 · doi:10.1016/j.na.2011.03.016
[11] A. Ferrero and F. Gazzola, “Existence of solutions for singular critical growth semilinear elliptic equations,” Journal of Differential Equations, vol. 177, no. 2, pp. 494-522, 2001. · Zbl 0997.35017 · doi:10.1006/jdeq.2000.3999
[12] P. Drábek and S. I. Pohozaev, “Positive solutions for the p-Laplacian: application of the fibering method,” Proceedings of the Royal Society of Edinburgh. Section A, vol. 127, no. 4, pp. 703-726, 1997. · Zbl 0880.35045 · doi:10.1017/S0308210500023787
[13] K. J. Brown and Y. Zhang, “The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function,” Journal of Differential Equations, vol. 193, no. 2, pp. 481-499, 2003. · Zbl 1074.35032 · doi:10.1016/S0022-0396(03)00121-9
[14] P. A. Binding, P. Drábek, and Y. X. Huang, “On Neumann boundary value problems for some quasilinear elliptic equations,” Electronic Journal of Differential Equations, p. No. 05, approx. 11 pp. (electronic), 1997. · Zbl 0886.35060
[15] T.-F. Wu, “Multiple positive solutions for a class of concave-convex elliptic problems in \Bbb RN involving sign-changing weight,” Journal of Functional Analysis, vol. 258, no. 1, pp. 99-131, 2010. · Zbl 1182.35119 · doi:10.1016/j.jfa.2009.08.005
[16] I. Ekeland, “On the variational principle,” Journal of Mathematical Analysis and Applications, vol. 47, pp. 324-353, 1974. · Zbl 0286.49015 · doi:10.1016/0022-247X(74)90025-0
[17] T.-F. Wu, “On semilinear elliptic equations involving concave-convex nonlinearities and sign-changing weight function,” Journal of Mathematical Analysis and Applications, vol. 318, no. 1, pp. 253-270, 2006. · Zbl 1153.35036 · doi:10.1016/j.jmaa.2005.05.057
[18] H. Brézis and E. Lieb, “A relation between pointwise convergence of functions and convergence of functionals,” Proceedings of the American Mathematical Society, vol. 88, no. 3, pp. 486-490, 1983. · Zbl 0526.46037 · doi:10.2307/2044999
[19] N. S. Trudinger, “On Harnack type inequalities and their application to quasilinear elliptic equations,” Communications on Pure and Applied Mathematics, vol. 20, pp. 721-747, 1967. · Zbl 0153.42703 · doi:10.1002/cpa.3160200406
[20] P.-L. Lions, “The concentration-compactness principle in the calculus of variations. The limit case. I,” Revista Matemática Iberoamericana, vol. 1, no. 1, pp. 145-201, 1985. · Zbl 0704.49005 · doi:10.4171/RMI/6
[21] P.-L. Lions, “The concentration-compactness principle in the calculus of variations. The limit case. II,” Revista Matemática Iberoamericana, vol. 1, no. 2, pp. 45-121, 1985. · Zbl 0704.49006 · doi:10.4171/RMI/12
[22] J. Chen, “Existence of solutions for a nonlinear PDE with an inverse square potential,” Journal of Differential Equations, vol. 195, no. 2, pp. 497-519, 2003. · Zbl 1039.35035 · doi:10.1016/S0022-0396(03)00093-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.