×

The analysis of epidemic network model with infectious force in latent and infected period. (English) Zbl 1211.34061

Summary: We discuss the epidemic network model with infectious force in latent and infected period. We obtain the basic reproduction number and analyze the globally dynamic behavior of the disease-free equilibrium when the basic reproduction number is less than one. The effects of various immunization schemes are studied. Finally, the final sizes relation is derived for the network epidemic model. The derivation depends on an explicit formula for the basic reproduction number of network of disease transmission models.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
34D05 Asymptotic properties of solutions to ordinary differential equations
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
92D30 Epidemiology
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] N. T. J Bailey, The Mathematical Theory of Infectious Diseases, Griffin, London, UK, 2nd edition, 1975. · Zbl 0334.92024
[2] R. M. Anderson and R. M. May, Infectious Disease in Humans, Oxford University Press, Oxford, UK, 1992.
[3] R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks,” Reviews of Modern Physics, vol. 74, no. 1, pp. 47-97, 2002. · Zbl 1205.82086 · doi:10.1103/RevModPhys.74.47
[4] L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley, “Classes of small-world networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 21, pp. 11149-11152, 2000.
[5] S. N. Dorogovtsev and J. F. F. Mendes, Evolution of Networks: From Biological Nets to the Internet and WWW, Oxford University Press, Oxford, UK, 2003. · Zbl 1109.68537
[6] R. Pastor-Satorras and A. Vespignani, Evolution and Structures of the Internet: A Statistical Physics Approach, Cambridge University Press, Cambridge, UK, 2004. · Zbl 1087.68509
[7] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world9 networks,” Nature, vol. 393, no. 6684, pp. 440-442, 1998. · Zbl 1368.05139
[8] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” Science, vol. 286, no. 5439, pp. 509-512, 1999. · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[9] M. Faloutsos, P. Faloutsos, and C. Faioutsos, “On power-law relationships of the internet topology,” Computer Communication Review, vol. 29, no. 4, pp. 251-261, 1999.
[10] R. Pastor-Satorras and A. Vespignani, “Epidemic spreading in scale-free networks,” Physical Review Letters, vol. 86, no. 14, pp. 3200-3203, 2001. · doi:10.1103/PhysRevLett.86.3200
[11] R. Pastor-Satorras and A. Vespignani, “Epidemic dynamics and endemic states in complex networks,” Physical Review E, vol. 63, no. 6, Article ID 066117, 8 pages, 2001.
[12] M. Boguñá, R. Pastor-Satorras, and A. Vespignani, “Absence of epidemic threshold in scale-free networks with degree correlations,” Physical Review Letters, vol. 90, no. 2, Article ID 028701, 4 pages, 2003. · Zbl 1132.92338
[13] M. Barthélemy, A. Barrat, R. Pastor-Satorras, and A. Vespignani, “Dynamical patterns of epidemic outbreaks in complex heterogeneous networks,” Journal of Theoretical Biology, vol. 235, no. 2, pp. 275-288, 2005. · doi:10.1016/j.jtbi.2005.01.011
[14] M. Boguna, R. Pastor-Satorras, and A. Vespignani, “Epidemic spreading in complex networks with degree correlations,” in Proceedings of the 18th Sitges Conference on Statistical Mechanics of Complex Networks, vol. 625 of Lecture Notes in Physics, pp. 127-147, 2003. · Zbl 1132.92338
[15] R. Pastor-Satorras and A. Vespignani, “Epidemic dynamics in finite size scale-free networks,” Physical Review E, vol. 65, no. 3, Article ID 035108, 4 pages, 2002. · doi:10.1103/PhysRevE.65.035108
[16] R. M. May and A. L. Lloyd, “Infection dynamics on scale-free networks,” Physical Review E, vol. 64, no. 6, Article ID 066112, 4 pages, 2001.
[17] Y. Moreno, R. Pastor-Satorras, and A. Vespignani, “Epidemic outbreaks in complex heterogeneous networks,” European Physical Journal B, vol. 26, no. 4, pp. 521-529, 2002. · doi:10.1007/s10051-002-8996-y
[18] M. Barthélemy, A. Barrat, R. Pastor-Satorras, and A. Vespignani, “Velocity and hierarchical spread of epidemic outbreaks in scale-free networks,” Physical Review Letters, vol. 92, no. 17, Article ID 178701, 2004. · Zbl 1109.68323 · doi:10.1103/PhysRevLett.92.178701
[19] T. Zhou, G. Yan, and B. H. Wang, “Maximal planar networks with large clustering coefficient and power-law degree distribution,” Physical Review E, vol. 71, no. 4, Article ID 046141, 12 pages, 2005. · doi:10.1103/PhysRevE.71.046141
[20] A. Vazquez, “Polynomial growth in branching processes with diverging reproductive number,” Physical Review Letters, vol. 96, no. 3, Article ID 038702, 2006. · doi:10.1103/PhysRevLett.96.038702
[21] P. van den Driessche and James Watmough, “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,” Mathematical Biosciences, vol. 180, pp. 29-48, 2002, John A. Jacquez memorial volum. · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[22] J. K. Hale, Ordinary Differential Equations, Pure and Applied Mathematics, Vol. XX, Wiley-Interscience, New York, NY, USA, 1969. · Zbl 0186.40901
[23] R. Pastor-Satorras and A. Vespignani, “Immunization of complex networks,” Physical Review E, vol. 65, no. 3, Article ID 036104, 8 pages, 2002. · doi:10.1103/PhysRevE.65.036104
[24] N. Madar, T. Kalisky, R. Cohen, D. Ben-Avraham, and S. Havlin, “Immunization and epidemic dynamics in complex networks,” European Physical Journal B, vol. 38, no. 2, pp. 269-276, 2004. · doi:10.1140/epjb/e2004-00119-8
[25] X. Fu, M. Small, D. M. Walker, and H. Zhang, “Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization,” Physical Review E, vol. 77, no. 3, Article ID 036113, 8 pages, 2008. · doi:10.1103/PhysRevE.77.036113
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.