×

Hybrid Taguchi-differential evolution algorithm for parameter estimation of differential equation models with application to HIV dynamics. (English) Zbl 1208.34069

Summary: This work emphasizes solving the problem of parameter estimation for a human immunodeficiency virus (HIV) dynamical model by using an improved differential evolution, which is called the hybrid Taguchi-differential evolution (HTDE). The HTDE, used to estimate parameters of an HIV dynamical model, can provide robust optimal solutions. In this work, the HTDE approach is effectively applied to solve the problem of parameter estimation for an HIV dynamical model and is also compared with the traditional differential evolution (DE) approach and numerical methods presented in the literature. An illustrative example shows that the proposed HTDE gives an effective and robust way for obtaining an optimal solution, and can get better results than the traditional DE approach and numerical methods presented in the literature for an HIV dynamical model.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
92D30 Epidemiology
34A55 Inverse problems involving ordinary differential equations
92C60 Medical epidemiology
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] A. S. Perelson and P. W. Nelson, “Mathematical analysis of HIV-1 dynamics in vivo,” SIAM Review, vol. 41, no. 1, pp. 3-44, 1999. · Zbl 1078.92502 · doi:10.1137/S0036144598335107
[2] S. Bonhoeffer, M. Rembiszewski, G. M. Ortiz, and D. F. Nixon, “Risks and benefits of structured antiretroviral drug therapy interruptions in HIV-1 infection,” AIDS, vol. 14, no. 15, pp. 2313-2322, 2000. · doi:10.1097/00002030-200010200-00012
[3] D. Wodarz, “Helper-dependent vs. helper-independent CTL responses in HIV infection: implications for drug therapy and resistance,” Journal of Theoretical Biology, vol. 213, no. 3, pp. 447-459, 2001. · doi:10.1006/jtbi.2001.2426
[4] D. Wodarz and M. A. Nowak, “Mathematical models of HIV pathogenesis and treatment,” BioEssays, vol. 24, no. 12, pp. 1178-1187, 2002. · doi:10.1002/bies.10196
[5] R. V. Culshaw, S. Ruan, and G. Webb, “A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay,” Journal of Mathematical Biology, vol. 46, no. 5, pp. 425-444, 2003. · Zbl 1023.92011 · doi:10.1007/s00285-002-0191-5
[6] P. Katri and S. Ruan, “Dynamics of human T-cell lymphotropic virus I (HTLV-I) infection of CD4+ T-cells,” Comptes Rendus Biologies, vol. 327, no. 11, pp. 1009-1016, 2004. · doi:10.1016/j.crvi.2004.05.011
[7] B. M. Adams, H. T. Banks, M. Davidian et al., “HIV dynamics: modeling, data analysis, and optimal treatment protocols,” Journal of Computational and Applied Mathematics, vol. 184, no. 1, pp. 10-49, 2005. · Zbl 1075.92030 · doi:10.1016/j.cam.2005.02.004
[8] A. Murase, T. Sasaki, and T. Kajiwara, “Stability analysis of pathogen-immune interaction dynamics,” Journal of Mathematical Biology, vol. 51, no. 3, pp. 247-267, 2005. · Zbl 1086.92029 · doi:10.1007/s00285-005-0321-y
[9] J. Karrakchou, M. Rachik, and S. Gourari, “Optimal control and infectiology: application to an HIV/AIDS model,” Applied Mathematics and Computation, vol. 177, no. 2, pp. 807-818, 2006. · Zbl 1096.92031 · doi:10.1016/j.amc.2005.11.092
[10] T. Dumrongpokaphan, Y. Lenbury, R. Ouncharoen, and Y. Xu, “An intracellular delay-differential equation model of the HIV infection and immune control,” Mathematical Modelling of Natural Phenomena, vol. 2, no. 1, pp. 84-112, 2007. · Zbl 1337.92205 · doi:10.1051/mmnp:2008012
[11] H. Zhu and X. Zou, “Impact of delays in cell infection and virus production on HIV-1 dynamics,” Mathematical Medicine and Biology, vol. 25, no. 2, pp. 99-112, 2008. · Zbl 1155.92031 · doi:10.1093/imammb/dqm010
[12] D. Burg, L. Rong, A. U. Neumann, and H. Dahari, “Mathematical modeling of viral kinetics under immune control during primary HIV-1 infection,” Journal of Theoretical Biology, vol. 259, no. 4, pp. 751-759, 2009. · Zbl 1402.92384 · doi:10.1016/j.jtbi.2009.04.010
[13] V. Radisavljevic-Gajic, “Optimal control of HIV-virus dynamics,” Annals of Biomedical Engineering, vol. 37, no. 6, pp. 1251-1261, 2009. · doi:10.1007/s10439-009-9672-7
[14] A. Rao, K. Thomas, K. Sudhakar, and P. K. Maini, “HIV/AIDS epidemic in India and predicting the impact of the national response: mathematical modeling and analysis,” Mathematical Biosciences and Engineering, vol. 6, no. 4, pp. 779-813, 2009. · Zbl 1178.92048 · doi:10.3934/mbe.2009.6.779
[15] X. Wang, Y. Tao, and X. Song, “A delayed HIV-1 infection model with Beddington-DeAngelis functional response,” Nonlinear Dynamics, vol. 62, pp. 67-72, 2010. · Zbl 1209.34102 · doi:10.1007/s11071-010-9699-1
[16] H. Wu, A. A. Ding, and V. De Gruttola, “Estimation of HIV dynamic parameters,” Statistics in Medicine, vol. 17, no. 21, pp. 2463-2485, 1998. · doi:10.1002/(SICI)1097-0258(19981115)17:21<2463::AID-SIM939>3.0.CO;2-A
[17] H. Putter, S. H. Heisterkamp, J. M. A. Lange, and F. De Wolf, “A Bayesian approach to parameter estimation in HIV dynamical models,” Statistics in Medicine, vol. 21, no. 15, pp. 2199-2214, 2002. · doi:10.1002/sim.1211
[18] X. Xia, “Estimation of HIV/AIDS parameters,” Automatica, vol. 39, no. 11, pp. 1983-1988, 2003. · Zbl 1046.93013 · doi:10.1016/S0005-1098(03)00220-6
[19] X. Xia and C. H. Moog, “Identifiability of nonlinear systems with application to HIV/AIDS models,” IEEE Transactions on Automatic Control, vol. 48, no. 2, pp. 330-336, 2003. · Zbl 1364.93838 · doi:10.1109/TAC.2002.808494
[20] M. S. Ciupe, B. L. Bivort, D. M. Bortz, and P. W. Nelson, “Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models,” Mathematical Biosciences, vol. 200, no. 1, pp. 1-27, 2006. · Zbl 1086.92022 · doi:10.1016/j.mbs.2005.12.006
[21] Y. Huang, D. Liu, and H. Wu, “Hierarchical Bayesian methods for estimation of parameters in a longitudinal HIV dynamic system,” Biometrics, vol. 62, no. 2, pp. 413-423, 2006. · Zbl 1097.62128 · doi:10.1111/j.1541-0420.2005.00447.x
[22] S. Manseur, N. Messaoudi, and Y. Cherruault, “Parameter identification of an HIV model by the combined Adomian/Alienor method,” Kybernetes, vol. 35, no. 10, pp. 1725-1734, 2006. · Zbl 1160.93348 · doi:10.1108/03684920610688685
[23] H. Wu, H. Zhu, H. Miao, and A. S. Perelson, “Parameter identifiability and estimation of HIV/AIDS dynamic models,” Bulletin of Mathematical Biology, vol. 70, no. 3, pp. 785-799, 2008. · Zbl 1146.92021 · doi:10.1007/s11538-007-9279-9
[24] H. Miao, C. Dykes, L. M. Demeter, and H. Wu, “Differential equation modeling of HIV viral fitness experiments: model identification, model selection, and multimodel inference,” Biometrics, vol. 65, no. 1, pp. 292-300, 2009. · Zbl 1159.62079 · doi:10.1111/j.1541-0420.2008.01059.x
[25] H. Liang, H. Miao, and H. Wu, “Estimation of constant and time-varying dynamic parameters of HIV infection in a nonlinear differential equation model,” Annals of Applied Statistics, vol. 4, pp. 460-483, 2010. · Zbl 1189.62171 · doi:10.1214/09-AOAS290
[26] R. Storn and K. Price, “Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces,” Tech. Rep. TR-95-012, International Computer Science Institute, Berkeley, Calif, USA, 1995. · Zbl 0888.90135
[27] J. Liu and J. Lampinen, “A fuzzy adaptive differential evolution algorithm,” Soft Computing, vol. 9, no. 6, pp. 448-462, 2005. · Zbl 1076.93513 · doi:10.1007/s00500-004-0363-x
[28] R. Angira and B. V. Babu, “Optimization of process synthesis and design problems: a modified differential evolution approach,” Chemical Engineering Science, vol. 61, no. 14, pp. 4707-4721, 2006. · Zbl 1266.90159 · doi:10.1016/j.ces.2006.03.004
[29] H.-K. Kim, J.-K. Chong, K.-Y. Park, and D. A. Lowther, “Differential evolution strategy for constrained global optimization and application to practical engineering problems,” IEEE Transactions on Magnetics, vol. 43, no. 4, pp. 1565-1568, 2007. · doi:10.1109/TMAG.2006.892100
[30] G. C. Onwubolu, “Design of hybrid differential evolution and group method of data handling networks for modeling and prediction,” Information Sciences, vol. 178, no. 18, pp. 3616-3634, 2008. · Zbl 05321612 · doi:10.1016/j.ins.2008.05.013
[31] T. Takahama, S. Sakai, A. Hara, and N. Iwane, “Predicting stock price using neural networks optimized by differential evolution with degeneration,” International Journal of Innovative Computing, Information and Control, vol. 5, no. 12, pp. 5021-5031, 2009.
[32] W.-H. Ho, J.-H. Chou, and C.-Y. Guo, “Parameter identification of chaotic systems using improved differential evolution algorithm,” Nonlinear Dynamics, vol. 61, pp. 29-41, 2010. · Zbl 1204.93034 · doi:10.1007/s11071-009-9629-2
[33] A. Noktehdan, B. Karimi, and A. Husseinzadeh Kashan, “A differential evolution algorithm for the manufacturing cell formation problem using group based operators,” Expert Systems with Applications, vol. 37, no. 7, pp. 4822-4829, 2010. · doi:10.1016/j.eswa.2009.12.033
[34] J.-T. Tsai, W.-H. Ho, J.-H. Chou, and C.-Y. Guo, “Optimal approximation of linear systems using Taguchi-sliding-based differential evolution algorithm,” Applied Soft Computing Journal. In press. · Zbl 05889519 · doi:10.1016/j.asoc.2010.06.016
[35] R. Storn, “System design by constraint adaptation and differential evolution,” IEEE Transactions on Evolutionary Computation, vol. 3, no. 1, pp. 22-34, 1999. · Zbl 05452157 · doi:10.1109/4235.752918
[36] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization, Natural Computing Series, Springer, Berlin, Germany, 2005. · Zbl 1186.90004
[37] M. A. Nowak and C. R. M. Bangham, “Population dynamics of immune responses to persistent viruses,” Science, vol. 272, no. 5258, pp. 74-79, 1996. · doi:10.1126/science.272.5258.74
[38] G. Taguchi, S. Chowdhury, and S. Taguchi, Robust Engineering, McGraw-Hill, New York, NY, USA, 2000.
[39] Y. Wu, Taguchi Methods for Robust Design, The American Society of Mechanical Engineers, New York, NY, USA, 2000.
[40] J.-T. Tsai, T.-K. Liu, and J.-H. Chou, “Hybrid Taguchi-genetic algorithm for global numerical optimization,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 4, pp. 365-377, 2004. · Zbl 05452169 · doi:10.1109/TEVC.2004.826895
[41] J.-T. Tsai, J.-H. Chou, and T.-K. Liu, “Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm,” IEEE Transactions on Neural Networks, vol. 17, no. 1, pp. 69-80, 2006. · doi:10.1109/TNN.2005.860885
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.