×

Dynamic tracking with zero variation and disturbance rejection applied to discrete-time systems. (English) Zbl 1206.93068

Summary: The problem of signal tracking in discrete linear time invariant systems, in the presence of a disturbance signal in the plant, is solved using a new zero-variation methodology. A discrete-time dynamic output feedback controller is designed in order to minimize the \({\mathcal H}_\infty\) norm between the exogen input and the output signal of the system, such that the effect of the disturbance is attenuated. Then, the zeros modification is used to minimize the \(\mathcal H_{\infty}\) norm from the reference input signal to the error signal. The error is taken as the difference between the reference and the output signal. The proposed design is formulated in Linear Matrix Inequalities (LMIs) framework, such that the optimal solution of the stated problem is obtained. The method can be applied to plants with delay. The control of a delayed system illustrates the effectiveness of the proposed method.

MSC:

93C55 Discrete-time control/observation systems
93C05 Linear systems in control theory
93B52 Feedback control
93C73 Perturbations in control/observation systems

Software:

LMI toolbox
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. C. M. Teixeira, E. Assun, R. Cardim, N. A. P. da Silva, and E. R. M. D. Machado, “On complementary root locus of biproper transfer functions,” Mathematical Problems in Engineering, vol. 2009, Article ID 727908, 14 pages, 2009. · Zbl 1183.93074
[2] M. De la Sen, “Pole-placement in discrete systems by using single and multirate sampling,” Journal of the Franklin Institute B, vol. 333, no. 5, pp. 721-746, 1996. · Zbl 0882.93032
[3] A. Saberi, P. Sannuti, and A. A. Stoorvogel, “H2 optimal controllers with measurement feedback for discrete-time systems: flexibility in closed-loop pole placement,” Automatica, vol. 33, no. 3, pp. 289-304, 1997. · Zbl 0874.93040
[4] M. M’Saad, R. Ortega, and I. D. Landau, “Adaptive controllers for discrete-time systems with arbitrary zeros: an overview,” Automatica, vol. 21, no. 4, pp. 413-423, 1985. · Zbl 0571.93041
[5] W. C. Messner and C. J. Kempf, “Zero placement for designing discrete-time repetitive controllers,” Control Engineering Practice, vol. 4, no. 4, pp. 563-569, 1996.
[6] R. A. T. Mendes, Controle Ótimo \Bbb H\infty com Modifica de Zeros para o Problema do Rastreamento em Sistemas Discretos usando LMI, M.S. thesis, Unesp, São Paulo, Brazil, 2007.
[7] C. Q. Andrea, Controle Ótimo \Bbb H2 e \Bbb H\infty com Aloca de Zeros para o Problema de Rastreamento usando LMI, M.S. thesis, UNESP, São Paulo, Brazil, 2002.
[8] E. Assun, C. Q. Andrea, and M. C. M. Teixeira, “\Bbb H2 and \Bbb H\infty -optimal control for the tracking problem with zero variation,” IET Control Theory and Applications, vol. 1, no. 3, pp. 682-688, 2007.
[9] B. M. Chen, Z. Lin, and K. Liu, “Robust and perfect tracking of discrete-time systems,” Automatica, vol. 38, no. 2, pp. 293-299, 2002. · Zbl 0991.93043
[10] M. C. Oliveira, Controle de Sistemas Lineares Baseado nas Desigualdades Matriciais Lineares, Ph.D. thesis, Unicamp, Campinas, Brazil, 1999.
[11] J. H. Park, “On design of dynamic output feedback controller for GCS of large-scale systems with delays in interconnections: LMI optimization approach,” Applied Mathematics and Computation, vol. 161, no. 2, pp. 423-432, 2005. · Zbl 1066.93003
[12] E. Assun and P. L. D. Peres, “A global optimization approach for the \Bbb H2-norm model reduction problem,” in Proceedings of the 38th IEEE Conference on Decision and Control (CDC ’99), pp. 1857-1862, Phoenix, Ariz, USA, December 1999.
[13] E. Assun, M. C. M. Teixeira, F. A. Faria, N. A. P. da Silva, and R. Cardim, “Robust state-derivative feedback LMI-based designs for multivariable linear systems,” International Journal of Control, vol. 80, no. 8, pp. 1260-1270, 2007. · Zbl 1133.93022
[14] M. C. M. Teixeira, E. Assun, and R. G. Avellar, “On relaxed LMI-based designs for fuzzy regulators and fuzzy observers,” IEEE Transactions on Fuzzy Systems, vol. 11, no. 5, pp. 613-623, 2003.
[15] M. C. M. Teixeira, E. Assun, and R. M. Palhares, “Discussion on: “\Bbb H\infty output feedback control design for uncertain fuzzy systems with multiple time scales: an LMI approach”,” European Journal of Control, vol. 11, no. 2, pp. 167-169, 2005. · Zbl 1293.93485
[16] M. C. M. Teixeira, E. Assun, and H. C. Pietrobom, “On relaxed LMI-based design for fuzzy regulators and fuzzy observers,” in Proceedings of the 6th European Control Conference, pp. 120-125, Porto, Portugal, 2001.
[17] E. Teixeira, E. Assun, and R. G. Avelar, “Design of SPR systems with dynamic compensators and output variable structure control,” in Proceedings of the International Workshop on Variable Structure Systems, vol. 1, pp. 328-333, Alghero, Italy, 2006.
[18] F. A. Faria, E. Assun, M. C. M. Teixeira, R. Cardim, and N. A. P. da Silva, “Robust state-derivative pole placement LMI-based designs for linear systems,” International Journal of Control, vol. 82, no. 1, pp. 1-12, 2009. · Zbl 1154.93366
[19] R. Cardim, M. C. M. Teixeira, E. Assun, and M. R. Covacic, “Variable-structure control design of switched systems with an application to a DC-DC power converter,” IEEE Transactions on Industrial Electronics, vol. 56, no. 9, pp. 3505-3513, 2009.
[20] F. A. Faria, E. Assun, M. C. M. Teixeira, and R. Cardim, “Robust state-derivative feedback LMI-based designs for linear descriptor systems,” Mathematical Problems in Engineering, vol. 2010, Article ID 927362, 15 pages, 2010. · Zbl 1191.93071
[21] P. Gahinet, A. Nemirovsk, A. J. Laub, and M. Chiali, LMI Control Toolbox User’s Guide, The Mathworks Inc., Natick, Mass, USA, 1995.
[22] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control of Dynamic Systems, Addison Wesley, New York, NY, USA, 2nd edition, 1990. · Zbl 0697.93002
[23] M. Chilali and P. Gahinet, “\Bbb H\infty design with pole placement constraints: an LMI approach,” IEEE Transactions on Automatic Control, vol. 41, no. 3, pp. 358-367, 1996. · Zbl 0857.93048
[24] E. L. Lima, Albebra Linear, Cole Mateméatica Universitéaria, IMPA, Rio de Janeiro, Brazil, 4th edition, 2000.
[25] R. M. Palhares, R. H. C. Takahashi, and P. L. D. Peres, “\Bbb H\infty and Ótimo \Bbb H2 guaranteed costs computation for uncertain linear systems,” International Journal of Systems Science, vol. 28, no. 2, pp. 183-188, 1997. · Zbl 0922.93014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.