×

An existence result for nonlinear fractional differential equations on Banach spaces. (English) Zbl 1181.34007

Summary: The aim of this paper is to investigate a class of boundary value problems for fractional differential equations involving nonlinear integral conditions. The main tool used in our considerations is the technique associated with measures of noncompactness.

MSC:

34A08 Fractional ordinary differential equations
34G20 Nonlinear differential equations in abstract spaces
47N20 Applications of operator theory to differential and integral equations
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Hilfer R (Ed): Applications of Fractional Calculus in Physics. World Scientific, River Edge, NJ, USA; 2000:viii+463. · Zbl 0998.26002
[2] Glockle WG, Nonnenmacher TF: A fractional calculus approach to self-similar protein dynamics. Biophysical Journal 1995, 68(1):46-53. 10.1016/S0006-3495(95)80157-8 · doi:10.1016/S0006-3495(95)80157-8
[3] Metzler R, Schick W, Kilian H-G, Nonnenmacher TF: Relaxation in filled polymers: a fractional calculus approach. The Journal of Chemical Physics 1995, 103(16):7180-7186. 10.1063/1.470346 · doi:10.1063/1.470346
[4] Podlubny I: Fractional Differential Equations, Mathematics in Science and Engineering. Volume 198. Academic Press, San Diego, Calif, USA; 1999:xxiv+340. · Zbl 0924.34008
[5] Gaul L, Klein P, Kemple S: Damping description involving fractional operators. Mechanical Systems and Signal Processing 1991, 5(2):81-88. 10.1016/0888-3270(91)90016-X · doi:10.1016/0888-3270(91)90016-X
[6] Agarwal RP, Benchohra M, Hamani S: Boundary value problems for differential inclusions with fractional order. Advanced Studies in Contemporary Mathematics 2008, 16(2):181-196. · Zbl 1152.26005
[7] Ahmad, B.; Nieto, JJ, Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, No. 2009, 11 (2009) · Zbl 1167.45003
[8] Ahmad, B.; Otero-Espinar, V., Existence of solutions for fractional differential inclusions with anti-periodic boundary conditions, No. 2009, 11 (2009) · Zbl 1172.34004
[9] Belarbi A, Benchohra M, Ouahab A: Uniqueness results for fractional functional differential equations with infinite delay in Fréchet spaces. Applicable Analysis 2006, 85(12):1459-1470. 10.1080/00036810601066350 · Zbl 1175.34080 · doi:10.1080/00036810601066350
[10] Belmekki M, Nieto JJ, Rodriguez-Lopez RR: Existence of periodic solution for a nonlinear fractional differential equation. Boundary Value Problems. in press · Zbl 1324.34063
[11] Benchohra M, Graef JR, Hamani S: Existence results for boundary value problems with non-linear fractional differential equations. Applicable Analysis 2008, 87(7):851-863. 10.1080/00036810802307579 · Zbl 1198.26008 · doi:10.1080/00036810802307579
[12] Benchohra M, Hamani S, Ntouyas SK: Boundary value problems for differential equations with fractional order. Surveys in Mathematics and Its Applications 2008, 3: 1-12. · Zbl 1157.26301
[13] Benchohra M, Henderson J, Ntouyas SK, Ouahab A: Existence results for fractional order functional differential equations with infinite delay. Journal of Mathematical Analysis and Applications 2008, 338(2):1340-1350. 10.1016/j.jmaa.2007.06.021 · Zbl 1209.34096 · doi:10.1016/j.jmaa.2007.06.021
[14] Chang Y-K, Nieto JJ: Some new existence results for fractional differential inclusions with boundary conditions. Mathematical and Computer Modelling 2009, 49(3-4):605-609. 10.1016/j.mcm.2008.03.014 · Zbl 1165.34313 · doi:10.1016/j.mcm.2008.03.014
[15] Daftardar-Gejji V, Bhalekar S: Boundary value problems for multi-term fractional differential equations. Journal of Mathematical Analysis and Applications 2008, 345(2):754-765. 10.1016/j.jmaa.2008.04.065 · Zbl 1151.26004 · doi:10.1016/j.jmaa.2008.04.065
[16] Figueiredo Camargo R, Chiacchio AO, Capelas de Oliveira E: Differentiation to fractional orders and the fractional telegraph equation. Journal of Mathematical Physics 2008, 49(3):-12. · Zbl 1153.81330 · doi:10.1063/1.2890375
[17] Kilbas AA, Srivastava HM, Trujillo JJ: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies. Volume 204. Elsevier Science B.V., Amsterdam, The Netherlands; 2006:xvi+523.
[18] Heymans N, Podlubny I: Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheologica Acta 2006, 45(5):765-771. 10.1007/s00397-005-0043-5 · doi:10.1007/s00397-005-0043-5
[19] Podlubny I: Geometric and physical interpretation of fractional integration and fractional differentiation. Fractional Calculus & Applied Analysis for Theory and Applications 2002, 5(4):367-386. · Zbl 1042.26003
[20] Blayneh KW: Analysis of age-structured host-parasitoid model. Far East Journal of Dynamical Systems 2002, 4(2):125-145. · Zbl 1059.92050
[21] Adomian G, Adomian GE: Cellular systems and aging models. Computers & Mathematics with Applications 1985, 11(1-3):283-291. · Zbl 0565.92017 · doi:10.1016/0898-1221(85)90153-1
[22] Arara A, Benchohra M: Fuzzy solutions for boundary value problems with integral boundary conditions. Acta Mathematica Universitatis Comenianae 2006, 75(1):119-126. · Zbl 1164.34333
[23] Benchohra M, Hamani S, Henderson J: Functional differential inclusions with integral boundary conditions. Electronic Journal of Qualitative Theory of Differential Equations 2007, 2007(15):1-13. · Zbl 1182.34006 · doi:10.14232/ejqtde.2007.1.15
[24] Benchohra M, Hamani S, Nieto JJ: The method of upper and lower solutions for second order differential inclusions with integral boundary conditions. to appear in The Rocky Mountain Journal of Mathematics · Zbl 1205.34013
[25] Infante, G., Eigenvalues and positive solutions of ODEs involving integral boundary conditions, 436-442 (2005) · Zbl 1169.34311
[26] Peciulyte S, Stikoniene O, Stikonas A: Sturm-Liouville problem for stationary differential operator with nonlocal integral boundary condition. Mathematical Modelling and Analysis 2005, 10(4):377-392. · Zbl 1105.34011
[27] Banaś J, Goebel K: Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics. Volume 60. Marcel Dekker, New York, NY, USA; 1980:vi+97.
[28] Banaś J, Sadarangani K: On some measures of noncompactness in the space of continuous functions. Nonlinear Analysis: Theory, Methods & Applications 2008, 68(2):377-383. 10.1016/j.na.2006.11.003 · Zbl 1134.46012 · doi:10.1016/j.na.2006.11.003
[29] Guo D, Lakshmikantham V, Liu X: Nonlinear Integral Equations in Abstract Spaces, Mathematics and Its Applications. Volume 373. Kluwer Academic Publishers, Dordrecht, The Netherlands; 1996:viii+341. · Zbl 0866.45004 · doi:10.1007/978-1-4613-1281-9
[30] Lakshmikantham V, Leela S: Nonlinear Differential Equations in Abstract Spaces, International Series in Nonlinear Mathematics: Theory, Methods and Applications. Volume 2. Pergamon Press, Oxford, UK; 1981:x+258. · Zbl 0456.34002
[31] Mönch H: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Analysis: Theory, Methods & Applications 1980, 4(5):985-999. 10.1016/0362-546X(80)90010-3 · Zbl 0462.34041 · doi:10.1016/0362-546X(80)90010-3
[32] Szufla S: On the application of measure of noncompactness to existence theorems. Rendiconti del Seminario Matematico della Università di Padova 1986, 75: 1-14. · Zbl 0589.45007
[33] Agarwal RP, Meehan M, O’Regan D: Fixed Point Theory and Applications, Cambridge Tracts in Mathematics. Volume 141. Cambridge University Press, Cambridge, UK; 2001:x+170. · Zbl 0960.54027 · doi:10.1017/CBO9780511543005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.