×

Permanence and global attractivity of discrete predator-prey system with Hassell-Varley type functional response. (English) Zbl 1178.39006

Summary: By constructing a suitable Lyapunov function and using the comparison theorem of difference equations, sufficient conditions which ensure the permanence and global attractivity of the discrete predator-prey system with Hassell-Varley type functional response are obtained. An example together with its numerical simulation shows that the main results are verifiable.

MSC:

39A12 Discrete version of topics in analysis
92D25 Population dynamics (general)
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] A. A. Berryman, “The origins and evolution of predator-prey theory,” Ecology, vol. 73, no. 5, pp. 1530-1535, 1992. · doi:10.2307/1940005
[2] H. I. Freedman, Deterministic Mathematical Models in Population Ecology, vol. 57 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 1980. · Zbl 0448.92023
[3] R. Arditi and H. Saiah, “Empirical evidence of the role of heterogeneity in ratio-dependent consumption,” Ecology, vol. 73, no. 5, pp. 1544-1551, 1992. · doi:10.2307/1940007
[4] R. Arditi, L. R. Ginzburg, and H. R. Akcakaya, “Variation in plankton densities among lakes: a case for ratio-dependent predation models,” The American Naturalist, vol. 138, no. 5, pp. 1287-1296, 1991. · doi:10.1086/285286
[5] B. Dai, H. Su, and D. Hu, “Periodic solution of a delayed ratio-dependent predator-prey model with monotonic functional response and impulse,” Nonlinear Analysis: Theory, Methods & Applications, vol. 70, no. 1, pp. 126-134, 2009. · Zbl 1166.34043 · doi:10.1016/j.na.2007.11.036
[6] F. Chen and J. Shi, “On a delayed nonautonomous ratio-dependent predator-prey model with Holling type functional response and diffusion,” Applied Mathematics and Computation, vol. 192, no. 2, pp. 358-369, 2007. · Zbl 1193.34140 · doi:10.1016/j.amc.2007.03.012
[7] A. P. Gutierrez, “Physiological basis of ratio-dependent predator-prey theory: the metabolic pool model as a paradigm,” Ecology, vol. 73, no. 5, pp. 1552-1563, 1992. · doi:10.2307/1940008
[8] R. Xu, F. A. Davidson, and M. A. J. Chaplain, “Persistence and stability for a two-species ratio-dependent predator-prey system with distributed time delay,” Journal of Mathematical Analysis and Applications, vol. 269, no. 1, pp. 256-277, 2002. · Zbl 1008.34065 · doi:10.1016/S0022-247X(02)00020-3
[9] R. Arditi and L. R. Ginzburg, “Coupling in predator-prey dynamics: ratio-dependence,” Journal of Theoretical Biology, vol. 139, no. 3, pp. 311-326, 1989. · doi:10.1016/S0022-5193(89)80211-5
[10] M. P. Hassell and G. C. Varley, “New inductive population model for insect parasites and its bearing on biological control,” Nature, vol. 223, no. 5211, pp. 1133-1137, 1969. · doi:10.1038/2231133a0
[11] S.-B. Hsu, T.-W. Hwang, and Y. Kuang, “Global dynamics of a predator-prey model with Hassell-Varley type functional response,” Discrete and Continuous Dynamical Systems, vol. 10, no. 4, pp. 857-871, 2008. · Zbl 1160.34046 · doi:10.3934/dcdsb.2008.10.857
[12] J. Yang, “Dynamics behaviors of a discrete ratio-dependent predator-prey system with holling type III functional response and feedback controls,” Discrete Dynamics in Nature and Society, vol. 2008, Article ID 186539, 19 pages, 2008. · Zbl 1161.39020 · doi:10.1155/2008/186539
[13] F. Chen, “Permanence in a discrete Lotka-Volterra competition model with deviating arguments,” Nonlinear Analysis: Real World Applications, vol. 9, no. 5, pp. 2150-2155, 2008. · Zbl 1156.39300 · doi:10.1016/j.nonrwa.2007.07.001
[14] F. Chen, “Permanence and global attractivity of a discrete multispecies Lotka-Volterra competition predator-prey systems,” Applied Mathematics and Computation, vol. 182, no. 1, pp. 3-12, 2006. · Zbl 1113.92061 · doi:10.1016/j.amc.2006.03.026
[15] X. Li and W. Yang, “Permanence of a discrete predator-prey systems with Beddington-deAngelis functional response and feedback controls,” Discrete Dynamics in Nature and Society, vol. 2008, Article ID 149267, 8 pages, 2008. · Zbl 1147.39007 · doi:10.1155/2008/149267
[16] X. Chen and C. Fengde, “Stable periodic solution of a discrete periodic Lotka-Volterra competition system with a feedback control,” Applied Mathematics and Computation, vol. 181, no. 2, pp. 1446-1454, 2006. · Zbl 1106.39003 · doi:10.1016/j.amc.2006.02.039
[17] Z. Zhou and X. Zou, “Stable periodic solutions in a discrete periodic logistic equation,” Applied Mathematics Letters, vol. 16, no. 2, pp. 165-171, 2003. · Zbl 1049.39017 · doi:10.1016/S0893-9659(03)80027-7
[18] L. Chen, J. Xu, and Z. Li, “Permanence and global attractivity of a delayed discrete predator-prey system with general Holling-type functional response and feedback controls,” Discrete Dynamics in Nature and Society, vol. 2008, Article ID 629620, 17 pages, 2008. · Zbl 1161.39017 · doi:10.1155/2008/629620
[19] L. L. Wang and Y. H. Fan, “Permanence for a discrete Nicholson/s blowflies model with feedback control and delay,” International Journal of Biomathematics, vol. 1, no. 4, pp. 433-442, 2008. · Zbl 1163.39011 · doi:10.1142/S1793524508000369
[20] F. Chen, “Permanence for the discrete mutualism model with time delays,” Mathematical and Computer Modelling, vol. 47, no. 3-4, pp. 431-435, 2008. · Zbl 1148.39017 · doi:10.1016/j.mcm.2007.02.023
[21] F. Chen, L. Wu, and Z. Li, “Permanence and global attractivity of the discrete Gilpin-Ayala type population model,” Computers & Mathematics with Applications, vol. 53, no. 8, pp. 1214-1227, 2007. · Zbl 1127.92038 · doi:10.1016/j.camwa.2006.12.015
[22] F. Chen, “Permanence of a discrete N-species cooperation system with time delays and feedback controls,” Applied Mathematics and Computation, vol. 186, no. 1, pp. 23-29, 2007. · Zbl 1113.93063 · doi:10.1016/j.amc.2006.07.084
[23] F. Chen, “Permanence and global stability of nonautonomous Lotka-Volterra system with predator-prey and deviating arguments,” Applied Mathematics and Computation, vol. 173, no. 2, pp. 1082-1100, 2006. · Zbl 1121.34080 · doi:10.1016/j.amc.2005.04.035
[24] H.-F. Huo and W.-T. Li, “Permanence and global stability of positive solutions of a nonautonomous discrete ratio-dependent predator-prey model,” Discrete Dynamics in Nature and Society, vol. 2005, no. 2, pp. 135-144, 2005. · Zbl 1111.39007 · doi:10.1155/DDNS.2005.135
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.