×

Physics of neutron star crusts. (English) Zbl 1166.85300

Summary: The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.

MSC:

85-02 Research exposition (monographs, survey articles) pertaining to astronomy and astrophysics
85A15 Galactic and stellar structure
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
PDFBibTeX XMLCite
Full Text: DOI arXiv EuDML Link

References:

[1] Abbott, B.; , Upper limits on gravitational wave emission from 78 radio pulsars, Phys. Rev. D, 76, 4, 042001 (2007)
[2] Abbott, B.; , Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar, Astrophys. J. Lett., 683, L45-L49 (2008)
[3] Abrikosov, Aa; Gorkov, Lp; Dzyaloshinski, Ie, Methods of Quantum Field Theory in Statistical Physics (1975), New York, U.S.A.: Dover, New York, U.S.A.
[4] Alford, M.; Bowers, Ja; Rajagopal, K., Crystalline color superconductivity, Phys. Rev. D, 63, 7, 074016 (2001)
[5] Alpar, Ma, Pinning and Threading of Quantized Vortices in the Pulsar Crust Superfluid, Astrophys. J., 213, 527-530 (1977)
[6] Alpar, Ma; Chau, Hf; Cheng, Ks; Pines, D., Postglitch relaxation of the VELA pulsar after its first eight large glitches: A reevaluation with the vortex creep model, Astrophys. J., 409, 345-359 (1993)
[7] Alpar, Ma; Chau, Hf; Cheng, Ks; Pines, D., Postglitch Relaxation of the Crab Pulsar after Its First Four Major Glitches: The Combined Effects of Crust Cracking, Formation of Vortex Depletion Region and Vortex Creep, Astrophys. J., 459, 706 (1996)
[8] Alpar, Ma; Langer, Sa; Sauls, Ja, Rapid postglitch spin-up of the superfluid core in pulsars, Astrophys. J., 282, 533-541 (1984)
[9] Alpar, Ma; Pines, D.; Anderson, Pw; Shaham, J., Vortex creep and the internal temperature of neutron stars. I. General theory, Astrophys. J., 276, 325-334 (1984)
[10] Anderson, Pw; Itoh, N., Pulsar glitches and restlessness as a hard superfluidity phenomenon, Nature, 256, 25-27 (1975)
[11] Anderson, Pw; Morel, P., Generalized Bardeen-Cooper-Schrieffer States and the Proposed Low-Temperature Phase of Liquid He^3, Phys. Rev., 123, 1911-1934 (1961)
[12] Andersson, N., Gravitational waves from instabilities in relativistic stars, Class. Quantum Grav., 20, R105-R144 (2003) · Zbl 1035.83001
[13] Andersson, N.; Comer, Gl, On the dynamics of superfluid neutron star cores, Mon. Not. R. Astron. Soc., 328, 1129-1143 (2001)
[14] Andersson, N.; Comer, Gl, Probing Neutron-Star Superfluidity with Gravitational-Wave Data, Phys. Rev. Lett., 87, 241101 (2001)
[15] Andersson, N., and Comer, G.L., “Relativistic Fluid Dynamics: Physics for Many Different Scales”, Living Rev. Relativity, 10, lrr-2007-1, (2007). URL (cited on 2 October 2007): http://www.livingreviews.org/lrr-2007-1. 10, 10.1 · Zbl 1255.85001
[16] Andersson, N.; Comer, Gl; Prix, R., The superfluid two-stream instability, Mon. Not. R. Astron. Soc., 354, 101-110 (2004)
[17] Andersson, N.; Kokkotas, Kd, The R-Mode Instability in Rotating Neutron Stars, Int. J. Mod. Phys. D, 10, 381-441 (2001)
[18] Andersson, N.; Sidery, T.; Comer, Gl, Mutual friction in superfluid neutron stars, Mon. Not. R. Astron. Soc., 368, 162-170 (2006)
[19] Andersson, N.; Sidery, T.; Comer, Gl, Superfluid neutron star turbulence, Mon. Not. R. Astron. Soc., 381, 747-756 (2007)
[20] Andreev, Af; Bashkin, Ep, Three-velocity hydrodynamics of superfluid solutions, Sov. Phys. JETP, 42, 164-167 (1975)
[21] Andronikashvili, El, Direct observation of two types of motion in helium II, Zh. Eksp. Teor. Fiz., 16, 780-785 (1946)
[22] Annett, Jf, Superconductivity, Superfluids and Condensates (2004), Oxford, U.K.; New York, U.S.A.: Oxford University Press, Oxford, U.K.; New York, U.S.A.
[23] Arnould, M.; Goriely, S.; Takahashi, K., The r-process of stellar nucleosynthesis: Astrophysics and nuclear physics achievements and mysteries, Phys. Rep., 450, 97-213 (2007)
[24] ATNF/CSIRO, “ATNF Pulsar Catalogue: Glitch parameters”, web interface to database. URL (cited on 10 September 2007): http://www.atnf.csiro.au/research/pulsar/psrcat/glitchTbl.html. 12.4
[25] Audi, G.; Wapstra, Ah; Thibault, C., The AME2003 atomic mass evaluation (II). Tables, graphs and references, Nucl. Phys. A, 729, 337-676 (2003)
[26] Australia Telescope National Facility, “ATNF pulsar database”, web interface to database. URL (cited on 20 August 2007): http://www.atnf.csiro.au/research/pulsar/psrcat/. 12.4
[27] Avogadro, P.; Barranco, F.; Broglia, Ra; Vigezzi, E., Quantum calculation of vortices in the inner crust of neutron stars, Phys. Rev. C, 75, 012805 (2007)
[28] Baldo, M.; Lombardo, U.; Saperstein, Ee; Tolokonnikov, Sv, The role of superfluidity in the structure of the neutron star inner crust, Nucl. Phys. A, 750, 409-424 (2005)
[29] Baldo, M.; Saperstein, Ee; Tolokonnikov, Sv, Superfluidity in nuclear and neutron matter, Nucl. Phys. A, 749, 42-52 (2005)
[30] Baldo, M.; Saperstein, Ee; Tolokonnikov, Sv, The role of the boundary conditions in the Wigner Seitz approximation applied to the neutron star inner crust, Nucl. Phys. A, 775, 235-244 (2006)
[31] Baldo, M.; Saperstein, Ee; Tolokonnikov, Sv, A realistic model of superfluidity in the neutron star inner crust, Eur. Phys. J. A, 32, 97-108 (2007)
[32] Baldo, M.; Saperstein, Ee; Tolokonnikov, Sv, Upper edge of the neutron star inner crust: The drip point and its vicinity, Phys. Rev. C, 76, 025803 (2007)
[33] Balibar, S., The Discovery of Superfluidity, J. Low Temp. Phys., 146, 441-470 (2007)
[34] Barat, C.; Hayles, Ri; Hurley, K.; Niel, M.; Vedrenne, G.; Desai, U.; Kurt, Vg; Zenchenko, Vm; Estulin, Iv, Fine time structure in the 1979 March 5 gamma ray burst, Astron. Astrophys., 126, 400-402 (1983)
[35] Bardeen, J., Critical Fields and Currents in Superconductors, Rev. Mod. Phys., 34, 667-681 (1962) · Zbl 0114.22901
[36] Bardeen, J.; Cooper, Ln; Schrieffer, Jr, Theory of Superconductivity, Phys. Rev., 108, 1175-1204 (1957) · Zbl 0090.45401
[37] Barranco, F.; Broglia, Ra; Esbensen, H.; Vigezzi, E., Role of finite nuclei on the pairing gap of the inner crust of neutron stars, Phys. Lett. B, 390, 13-17 (1997)
[38] Barranco, F.; Broglia, Ra; Esbensen, H.; Vigezzi, E., Semiclassical approximation to neutron star superfluidity corrected for proximity effects, Phys. Rev. C, 58, 1257-1262 (1998)
[39] Baym, G.; Bethe, Ha; Pethick, Cj, Neutron Star Matter, Nucl. Phys. A, 175, 225-271 (1971)
[40] Baym, G.; Pethick, C.; Pines, D.; Ruderman, M., Spin Up in Neutron Stars: The Future of the Vela Pulsar, Nature, 224, 872 (1969)
[41] Baym, G.; Pethick, Cj; Pines, D., Superfluidity in Neutron Stars, Nature, 224, 673 (1969)
[42] Baym, G.; Pethick, Cj; Sutherland, P., The Ground State of Matter at High Densities: Equation of State and Stellar Models, Astrophys. J., 170, 299-317 (1971)
[43] Baym, G.; Pines, D., Neutron starquakes and pulsar speedup, Ann. Phys. (N.Y.), 66, 816-835 (1971)
[44] Beig, R.; Schmidt, Bg, Relativistic elasticity, Class. Quantum Grav., 20, 889-904 (2003) · Zbl 1027.83017
[45] Bejger, M.; Haensel, P.; Zdunik, Jl, Rotation at 1122 Hz and the neutron star structure, Astron. Astrophys., 464, L49-L52 (2007)
[46] Belyaev, St, Effect of pairing correlations on nuclear properties, Mat.-Fys. Medd. K. Dan. Vid. Selsk., 31, 11, 1-55 (1959)
[47] Bender, M.; Heenen, P.; Reinhard, P., Self-consistent mean-field models for nuclear structure, Rev. Mod. Phys., 75, 121-180 (2003)
[48] Bildsten, L.; Epstein, Ri, Superfluid dissipation time scales in neutron star crusts, Astrophys. J., 342, 951-957 (1989)
[49] Bildsten, L.; Ushomirsky, G., Viscous Boundary-Layer Damping of r-Modes in Neutron Stars, Astrophys. J., 529, L33-L36 (2000)
[50] Bisnovatyi-Kogan, Gs; Chechetkin, Vm, Nonequilibrium envelopes of the neutron stars, their role in the maintenance of X-ray luminosity and nucleosynthesis, Usp. Fiz. Nauk, 127, 263-296 (1979)
[51] Bohr, A.; Mottelson, Br; Pines, D., Possible Analogy between the Excitation Spectra of Nuclei and Those of the Superconducting Metallic State, Phys. Rev., 110, 936-938 (1958)
[52] Bohr, N.; Wheeler, Ja, The Mechanism of Nuclear Fission, Phys. Rev., 56, 426-450 (1939) · JFM 65.1535.05
[53] Bonazzola, S.; Gourgoulhon, E.; Salgado, M.; Marck, Ja, Axisymmetric rotating relativistic bodies: A new numerical approach for ‘exact’ solutions, Astron. Astrophys., 278, 421-443 (1993)
[54] Bonche, P.; Vautherin, D., A mean-field calculation of the equation of state of supernova matter, Nucl. Phys. A, 372, 496-526 (1981)
[55] Bonche, P.; Vautherin, D., Mean-field calculations of the equation of state of supernova matter II, Astron. Astrophys., 112, 268-272 (1982)
[56] Botvina, As; Mishustin, In, Multifragmentation reactions and properties of stellar matter at subnuclear densities, Phys. Rev. C, 72, 048801 (2005)
[57] Botvina, A.S., Mishustin, I.N., and Trautmann, W., “Properties of stellar matter in supernova explosions and nuclear multifragmentation”, (2006). URL (cited on 2 October 2007): http://arXiv.org/abs/nucl-th/0612055. 3.3
[58] Brack, M.; Guet, C.; Hakansson, H-B, Selfconsistent semiclassical description of average nuclear properties-a link between microscopic and macroscopic models, Phys. Rep., 123, 275-364 (1985)
[59] Broglia, Ra; De Blasio, F.; Lazzari, G.; Lazzari, M.; Pizzochero, Pm, Specific heat of superfluid matter in the inner crust of neutron stars, Phys. Rev. D, 50, 4781-4785 (1994)
[60] Brown, Ef; Bildsten, L.; Rutledge, Re, Crustal Heating and Quiescent Emission from Transiently Accreting Neutron Stars, Astrophys. J. Lett., 504, L95 (1998)
[61] Buchler, J-R; Barkat, Z., Properties of low-density neutron-star matter, Phys. Rev. Lett., 27, 48-51 (1971)
[62] Bulgac, A.; Magierski, P., Quantum corrections to the ground state energy of inhomogeneous neutron matter, Nucl. Phys. A, 683, 695-712 (2001)
[63] Burrows, A.; Lattimer, Jm, On the accuracy of the single-nucleus approximation in the equation of state of hot, dense matter, Astrophys. J., 285, 294-303 (1984)
[64] Bürvenich, Tj; Mishustin, In; Greiner, W., Nuclei embedded in an electron gas, Phys. Rev. C, 76, 034310 (2007)
[65] Caballero, Ol; Horowitz, Cj; Berry, Dk, Neutrino scattering in heterogeneous supernova plasmas, Phys. Rev. C, 74, 6, 065801 (2006)
[66] Cackett, Em; Wijnands, R.; Linares, M.; Miller, Jm; Homan, J.; Lewin, Whg, Cooling of the quasi-persistent neutron star X-ray transients KS 1731-260 and MXB 1659-29, Mon. Not. R. Astron. Soc., 372, 479-488 (2006)
[67] California Institute of Technology, “LIGO Laboratory Home Page”, project homepage. URL (cited on 20 August 2007): http://www.ligo.caltech.edu/. 12.5
[68] Campbell, Lj, Rotational speedups accompanying angular deceleration of a superfluid, Phys. Rev. Lett., 43, 1336-1339 (1979)
[69] Cao, Lg; Lombardo, U.; Schuck, P., Screening effects in superfluid nuclear and neutron matter within Brueckner theory, Phys. Rev. C, 74, 6, 064301 (2006)
[70] Carter, B.; Anile, A.; Choquet-Bruhat, Y., Covariant theory of conductivity in ideal fluid or solid media, Relativistic Fluid Dynamics, 1-64 (1989), Berlin, Germany; New York, U.S.A.: Springer, Berlin, Germany; New York, U.S.A.
[71] Carter, B.; Bunkov, Ym; Godfrin, H., Relativistic dynamics of vortex defects in superfluids, Topological Defects and Non-Equilibrium Dynamics of Phase Transitions, 267-302 (2000), Dordrecht, Netherlands; Boston, U.S.A.: Kluwer Academic Publishers, Dordrecht, Netherlands; Boston, U.S.A.
[72] Carter, B.; Chachoua, E., Newtonian Mechanics of Neutron Superfluid in Elastic Star Crust, Int. J. Mod. Phys. D, 15, 1329-1358 (2006) · Zbl 1111.85002
[73] Carter, B.; Chachoua, E.; Chamel, N., Covariant Newtonian and relativistic dynamics of (magneto)-elastic solid model for neutron star crust, Gen. Relativ. Gravit., 38, 83-119 (2006) · Zbl 1161.85003
[74] Carter, B.; Chamel, N., Covariant Analysis of Newtonian Multi-Fluid Models for Neutron Stars I: Milne-Cartan Structure and Variational Formulation, Int. J. Mod. Phys. D, 13, 291-325 (2004) · Zbl 1083.83007
[75] Carter, B.; Chamel, N., Covariant Analysis of Newtonian Multi-Fluid Models for Neutron Stars II: Stress-Energy Tensors and Virial Theorems, Int. J. Mod. Phys. D, 14, 717-748 (2005) · Zbl 1084.83508
[76] Carter, B.; Chamel, N., Covariant Analysis of Newtonian Multi-Fluid Models for Neutron Stars III: Transvective, Viscous, and Superfluid Drag Dissipation, Int. J. Mod. Phys. D, 14, 749-774 (2005) · Zbl 1085.83503
[77] Carter, B.; Chamel, N.; Haensel, P., Effect of BCS pairing on entrainment in neutron superfluid current in neutron star crust, Nucl. Phys. A, 759, 441-464 (2005)
[78] Carter, B.; Chamel, N.; Haensel, P., Entrainment coefficient and effective mass for conduction neutrons in neutron star crust: simple microscopic models, Nucl. Phys. A, 748, 675-697 (2005)
[79] Carter, B.; Chamel, N.; Haensel, P., Entrainment Coefficient and Effective Mass for Conduction Neutrons in Neutron Star Crust: Macroscopic Treatment, Int. J. Mod. Phys. D, 15, 777-803 (2006) · Zbl 1115.85301
[80] Carter, B.; Langlois, D., Relativistic models for superconducting-superfluid mixtures, Nucl. Phys. B, 531, 478-504 (1998) · Zbl 0956.83023
[81] Carter, B.; Langlois, D.; Sedrakian, Dm, Centrifugal buoyancy as a mechanism for neutron star glitches, Astron. Astrophys., 361, 795-802 (2000)
[82] Carter, B.; Quintana, H., Foundations of General Relativistic High-Pressure Elasticity Theory, Proc. R. Soc. London, Ser. A, 331, 57-83 (1972) · Zbl 0249.73093
[83] Carter, B.; Quintana, H., Relativistic formulation of the neutron starquake theory of pulsar glitches, Ann. Phys. (N.Y.), 95, 74-89 (1975)
[84] Carter, B.; Quintana, H., Stationary elastic rotational deformation of a relativistic neutron star model, Astrophys. J., 202, 511-522 (1975)
[85] Carter, B.; Samuelsson, L., Relativistic mechanics of neutron superfluid in (magneto)elastic star crust, Class. Quantum Grav., 23, 5367-5388 (2006) · Zbl 1100.85002
[86] Chabanat, E.; Bonche, P.; Haensel, P.; Meyer, J.; Schaeffer, R., A Skyrme parametrization from subnuclear to neutron star densities, Nucl. Phys. A, 627, 710-746 (1997)
[87] Chabanat, E.; Bonche, P.; Haensel, P.; Meyer, J.; Schaeffer, R., Erratum to ‘A Skyrme parametrization from subnuclear to neutron star densities. Part II. Nuclei far from stabilities’ [Nucl. Phys. A635 (1998) 231-256], Nucl. Phys. A, 643, 441-441 (1998)
[88] Chabanat, E.; Bonche, P.; Haensel, P.; Meyer, J.; Schaeffer, R., A Skyrme parametrization from subnuclear to neutron star densities. Part II. Nuclei far from stabilities, Nucl. Phys. A, 635, 231-256 (1998)
[89] Chakrabarty, D.; Morgan, Eh; Muno, Mp; Galloway, Dk; Wijnands, R.; Van Der Klis, M.; Markwardt, Cb, Nuclear-powered millisecond pulsars and the maximum spin frequency of neutron stars, Nature, 424, 42-44 (2003)
[90] Chamel, N., Band structure effects for dripped neutrons in neutron star crust, Nucl. Phys. A, 747, 109-128 (2005)
[91] Chamel, N., Effective mass of free neutrons in neutron star crust, Nucl. Phys. A, 773, 263-278 (2006)
[92] Chamel, N.; Lombardo, U.; Baldo, M.; Burgio, F.; Schulze, H-J, Neutron Star Crust beyond the Wigner-Seitz Approximation, Exotic States of Nuclear Matter, 91-98 (2008), Singapore; Hackensack, U.S.A.: World Scientific, Singapore; Hackensack, U.S.A.
[93] Chamel, N., Two-fluid models of superfluid neutron star cores, Mon. Not. R. Astron. Soc., 388, 737-752 (2008)
[94] Chamel, N.; Carter, B., Effect of entrainment on stress and pulsar glitches in stratified neutron star crust, Mon. Not. R. Astron. Soc., 368, 796-808 (2006)
[95] Chamel, N.; Haensel, P., Entrainment parameters in a cold superfluid neutron star core, Phys. Rev. C, 73, 045802 (2006)
[96] Chamel, N.; Naimi, S.; Khan, E.; Margueron, J., Validity of the Wigner-Seitz approximation in neutron star crust, Phys. Rev. C, 75, 055806 (2007)
[97] Cheng, Ks; Yao, Cc; Dai, Zg, Properties of nuclei in the inner crusts of neutron stars in the relativistic mean-field theory, Phys. Rev. C, 55, 2092-2100 (1997)
[98] Chiu, H-Y; Morrison, P., Neutrino Emission from Black-Body Radiation at High Stellar Temperatures, Phys. Rev. Lett., 5, 573-575 (1960)
[99] Chiu, H-Y; Stabler, Rc, Emission of Photoneutrinos and Pair Annihilation Neutrinos from Stars, Phys. Rev., 122, 1317-1322 (1961)
[100] Chugunov, Ai; Haensel, P., Thermal conductivity of ions in a neutron star envelope, Mon. Not. R. Astron. Soc., 381, 1143-1153 (2007)
[101] Chugunov, Ai; Yakovlev, Dg, Shear Viscosity and Oscillations of Neutron Star Crust, Astron. Rep., 49, 724-738 (2005)
[102] Colpi, M.; Geppert, U.; Page, D.; Possenti, A., Charting the Temperature of the Hot Neutron Star in a Soft X-Ray Transient, Astrophys. J., 548, L175-L178 (2001)
[103] Combescot, R., Ultracold Fermi Gases: The BEC-BCS Crossover, J. Low Temp. Phys., 145, 267-276 (2006)
[104] Cumming, A.; Macbeth, J.; In’T Zand, Jjm; Page, D., Long Type I X-Ray Bursts and Neutron Star Interior Physics, Astrophys. J., 646, 429-451 (2006)
[105] Cutler, C., Gravitational waves from neutron stars with large toroidal B fields, Phys. Rev. D, 66, 084025 (2002)
[106] Dall’Osso, S.; Israel, Gl; Stella, L.; Possenti, A.; Perozzi, E., The Glitches of the Anomalous X-Ray Pulsar 1RXS J170849.0-400910, Astrophys. J., 599, 485-497 (2003)
[107] De Blasio, F.; Lazzari, G.; Pizzochero, Pm; Broglia, Ra, Superfluidity and thermal response of neutron star crusts, Phys. Rev. D, 53, 4226-4231 (1996)
[108] De Blasio, Fv, Crustal impurities and the internal temperature of a neutron star crust, Mon. Not. R. Astron. Soc., 299, 118-122 (1998)
[109] De Blasio, Fv, A dense two-component plasma in a strong gravity field and thermal conductivity of neutron stars, Astron. Astrophys., 353, 1129-1133 (2000)
[110] De Blasio, Fv; Elgarøy, Ø., Microscopic Structure of a Vortex Line in Superfluid Neutron Star Matter, Phys. Rev. Lett., 82, 1815-1818 (1999)
[111] De Blasio, Fv; Hjorth-Jensen, M.; Elgarøy, Ø.; Engvik, L.; Lazzari, G.; Baldo, M.; Schulze, H-J, Coherence length of neutron superfluids, Phys. Rev. C, 56, 2332-2335 (1997)
[112] De Blasio, Fv; Lazzari, G., Unusual nuclear shapes and neutron specific heat of neutron star crusts, Phys. Rev. C, 52, 418-420 (1995)
[113] De Blasio, Fv; Lazzari, G., Vibrations of slabs and cylindrical nuclei, Phys. Lett. B, 384, 1-4 (1996)
[114] De Gennes, Pg, Superconductivity of Metals and Alloys (1966), New York, U.S.A.: W.A. Benjamin, New York, U.S.A. · Zbl 0138.22801
[115] De Gennes, Pg; Prost, J., The Physics of Liquid Crystals (1993), Oxford, U.K.; New York, U.S.A.: Clarendon Press; Oxford University Press, Oxford, U.K.; New York, U.S.A.
[116] Dean, Dj; Hjorth-Jensen, M., Pairing in nuclear systems: from neutron stars to finite nuclei, Rev. Mod. Phys., 75, 607-656 (2003)
[117] Dechargé, J.; Gogny, D., Hartree-Fock-Bogolyubov calculations with the D1 effective interaction on spherical nuclei, Phys. Rev. C, 21, 1568-1593 (1980)
[118] Department of Theoretical Astrophysics, Ioffe Physico Technical-Institute, “Neutron Star Group”, project homepage. URL (cited on 20 August 2007): http://www.ioffe.ru/astro/NSG/. 5.1
[119] Dobaczewski, J.; Michel, N.; Nazarewicz, W.; Ploszajczak, M.; Rotureau, J., Shell structure of exotic nuclei, Prog. Part. Nucl. Phys., 59, 432-445 (2007)
[120] Donati, P.; Pizzochero, Pm, Is there Nuclear Pinning of Vortices in Superfluid Pulsars?, Phys. Rev. Lett., 90, 211101 (2003)
[121] Donati, P.; Pizzochero, Pm, Fully consistent semi-classical treatment of vortex-nucleus interaction in rotating neutron stars, Nucl. Phys. A, 742, 363-379 (2004)
[122] Donati, P.; Pizzochero, Pm, Realistic energies for vortex pinning in intermediate-density neutron star matter, Phys. Lett. B, 640, 74-81 (2006)
[123] Douchin, F.; Haensel, P., Bounds on the Existence of Neutron Rich Nuclei in Neutron Star Interiors, Acta Phys. Pol. B, 30, 1205 (1999)
[124] Douchin, F.; Haensel, P., Inner edge of neutron-star crust with SLy effective nucleon-nucleon interactions, Phys. Lett. B, 485, 107-114 (2000)
[125] Douchin, F.; Haensel, P., A unified equation of state of dense matter and neutron star structure, Astron. Astrophys., 380, 151-167 (2001)
[126] Douchin, F.; Haensel, P.; Meyer, J., Nuclear surface and curvature properties for SLy Skyrme forces and nuclei in the inner neutron-star crust, Nucl. Phys. A, 665, 419-446 (2000)
[127] Duine, Ra; Stoof, Htc, Atom-molecule coherence in Bose gases, Phys. Rep., 396, 115-195 (2004)
[128] Duncan, R.C., “‘Magnetars’, soft gamma repeaters and very strong magnetic fields”, personal homepage, University of Texas Austin. URL (cited on 20 August 2007): http://solomon.as.utexas.edu/∼duncan/magnetar.html. 12.6
[129] Duncan, Rc, Global Seismic Oscillations in Soft Gamma Repeaters, Astrophys. J. Lett., 498, L45 (1998)
[130] Dutta, Ak; Onsi, M.; Pearson, Jm, Proton-shell effects in neutron-star matter, Phys. Rev. C, 69, 052801 (2004)
[131] Dyson, Fj, Volcano Theory of Pulsars, Nature, 223, 486-487 (1969)
[132] Easson, I., Long-term changes in pulsar periods and the plasma in neutron star interiors, Astrophys. J., 233, 711-716 (1979)
[133] Easson, I., Postglitch behavior of the plasma inside neutron stars, Astrophys. J., 228, 257-267 (1979)
[134] Elgarøy, Ø.; De Blasio, Fv, Superfluid vortices in neutron stars, Astron. Astrophys., 370, 939-950 (2001)
[135] Elgarøy, Ø.; Engvik, L.; Osnes, E.; De Blasio, Fv; Hjorth-Jensen, M.; Lazzari, G., Superfluidity and neutron star crust matter, Phys. Rev. D, 54, 1848-1851 (1996)
[136] Elgarøy, Ø.; Hjorth-Jensen, M., Nucleon-nucleon phase shifts and pairing in neutron matter and nuclear matter, Phys. Rev. C, 57, 1174-1177 (1998)
[137] Ellis, T.; Mcclintock, Pve, The Breakdown of Superfluidity in Liquid^4He V. Measurement of the Landau Critical Velocity for Roton Creation, Philos. Trans. R. Soc. London, Ser. A, 315, 259-300 (1985)
[138] Epstein, Ri; Baym, G., Vortex pinning in neutron stars, Astrophys. J., 328, 680-690 (1988)
[139] Epstein, Ri; Baym, G., Vortex drag and the spin-up time scale for pulsar glitches, Astrophys. J., 387, 276-287 (1992)
[140] Farine, M.; Von-Eiff, D.; Schuck, P.; Berger, Jf; Dechargé, J.; Girod, M., Towards a new effective interaction of the Gogny type, J. Phys. G, 25, 863-866 (1999)
[141] Feibelman, Pj, Relaxation of Electron Velocity in a Rotating Neutron Superfluid: Application to the Relaxation of a Pulsar’s Slowdown Rate, Phys. Rev. D, 4, 1589-1597 (1971)
[142] Fetter, Al; Walecka, Jd, Quantum Theory of Many-Particle Systems (2003), Mineola, U.S.A.: Dover, Mineola, U.S.A.
[143] Feynman, Rp; Gorter, Cj, Application of quantum mechanics to liquid helium, Progress in Low Temperature Physics, 17 (1955), Amsterdam, Netherlands: North-Holland, Amsterdam, Netherlands
[144] Feynman, Rp, Statistical Mechanics: A Set Of Lectures (1998), Boulder, U.S.A.: Westview Press, Boulder, U.S.A.
[145] Feynman, Rp; Cohen, M., Energy Spectrum of the Excitations in Liquid Helium, Phys. Rev., 102, 1189-1204 (1956) · Zbl 0071.44702
[146] Flowers, E.; Itoh, N., Transport properties of dense matter, Astrophys. J., 206, 218-242 (1976)
[147] Flowers, E.; Itoh, N., Transport properties of dense matter. II, Astrophys. J., 230, 847-858 (1979)
[148] Flowers, E.; Ruderman, M.; Sutherland, P., Neutrino pair emission from finite-temperature neutron superfluid and the cooling of young neutron stars, Astrophys. J., 205, 541-544 (1976)
[149] Franco, Lm; Link, B.; Epstein, Ri, Quaking Neutron Stars, Astrophys. J., 543, 987-994 (2000)
[150] Freedman, Dz, Coherent effects of a weak neutral current, Phys. Rev. D, 9, 1389-1392 (1974)
[151] Fuchs, K., A Quantum Mechanical Calculation of the Elastic Constants of Monovalent Metals, Proc. R. Soc. London, Ser. A, 153, 622-639 (1936) · Zbl 0013.33302
[152] Fujimoto, My; Hanawa, T.; Miyaji, S., Shell flashes on accreting neutron stars and X-ray bursts, Astrophys. J., 247, 267-278 (1981)
[153] Galloway, Dk; Morgan, Eh; Levine, Am, A Frequency Glitch in an Accreting Pulsar, Astrophys. J., 613, 1164-1172 (2004)
[154] Gandelman, Gm; Pinaev, Vs, Emission of neutrino pairs by electrons and its importance in stars, Zh. Eksp. Teor. Fiz., 37, 1072-1078 (1959)
[155] Gandelman, Gm; Pinaev, Vs, Emission of neutrino pairs by electrons and its importance in stars, Sov. Phys. JETP, 10, 764 (1960)
[156] Gelfand, Jd, The radio nebula produced by the 27 December 2004 giant flare from SGR 1806-20, Astrophys. Space Sci., 308, 39-42 (2007)
[157] Gelfert, A.; Nolting, W., The absence of finite-temperature phase transitions in low-dimensional many-body models: a survey and new results, J. Phys.: Cond. Matter, 13, R505−R524 (2001)
[158] Geppert, U.; Küker, M.; Page, D., Temperature distribution in magnetized neutron star crusts, Astron. Astrophys., 426, 267-277 (2004) · Zbl 1060.85503
[159] Giacconi, R.; Gursky, H.; Paolini, Fr; Rossi, Bb, Evidence for X-Rays From Sources Outside the Solar System, Phys. Rev. Lett., 9, 439-443 (1962)
[160] Ginzburg, Vl, Superfluidity and Superconductivity in the Universe, J. Stat. Phys., 1, 3-24 (1969)
[161] Ginzburg, Vl; Kirzhnits, Da, On superfluidity of neutron stars, Zh. Eksp. Teor. Fiz., 47, 2006 (1964)
[162] Ginzburg, Vl; Kirzhnits, Da, On the superfluidity of neutron stars, Sov. Phys. JETP, 20, 1346 (1965)
[163] Glampedakis, K.; Andersson, N., Crust-core coupling in rotating neutron stars, Phys. Rev. D, 74, 044040 (2006)
[164] Glampedakis, K.; Andersson, N., Ekman layer damping of r modes revisited, Mon. Not. R. Astron. Soc., 371, 1311-1321 (2006)
[165] Glampedakis, K.; Samuelsson, L.; Andersson, N., Elastic or magnetic? A toy model for global magnetar oscillations with implications for quasi-periodic oscillations during flares, Mon. Not. R. Astron. Soc., 371, L74-L77 (2006)
[166] Glendenning, Nk, Compact stars: nuclear physics, particle physics, and general relativity (2000), New York, U.S.A.; Berlin, Germany: Springer, New York, U.S.A.; Berlin, Germany · Zbl 0958.85001
[167] Gnedin, Oy; Yakovlev, Dg; Potekhin, Ay, Thermal relaxation in young neutron stars, Mon. Not. R. Astron. Soc., 324, 725-736 (2001)
[168] Gögelein, P.; Müther, H., Nuclear matter in the crust of neutron stars, Phys. Rev. C, 76, 024312 (2007)
[169] Gori, G.; Ramponi, F.; Barranco, F.; Broglia, Ra; Coló, G.; Sarchi, D.; Vigezzi, E., Excitation modes and pairing interaction in the inner crust of a neutron stars, Nucl. Phys. A, 731, 401-408 (2004)
[170] Goriely, S.; Demetriou, P.; Janka, H-T; Pearson, Jm; Samyn, M., The r-process nucleosynthesis: a continued challenge for nuclear physics and astrophysics, Nucl. Phys. A, 758, 587-594 (2005)
[171] Goriely, S.; Samyn, M.; Pearson, Jm; Onsi, M., Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. IV: Neutron-matter constraint, Nucl. Phys. A, 750, 425-443 (2005)
[172] Gorkov, Lp; Melik-Barkhudarov, Tk, Contribution to the theory of super-fluidity in an imperfect Fermi gas, Sov. Phys. JETP, 13, 1018 (1961)
[173] Gorter, Cj; Mellink, Jh, On the irreversible processes in liquid helium II, Physica, 15, 285-304 (1949)
[174] Gourgoulhon, E.; Rieutord, M.; Dubrulle, B., An Introduction to Relativistic Hydrodynamics, Stellar Fluid Dynamics and Numerical Simulations: From the Sun to Neutron Stars, 43-79 (2006), Les Ulis, France: EDP Sciences, Les Ulis, France
[175] Greenstein, G., Superfluid turbulence in neutron stars, Nature, 227, 791-794 (1970)
[176] Grigorian, H., Brightness constraint for cooling models of young neutron stars, Phys. Rev. C, 74, 025801 (2006)
[177] Grindlay, J.; Gursky, H.; Schnopper, H.; Parsignault, Dr; Heise, J.; Brinkman, Ac; Schrijver, J., Discovery of intense X-ray bursts from the globular cluster NGC 6624, Astrophys. J., 205, L127-L130 (1976)
[178] Gupta, S.; Brown, Ef; Schatz, H.; Möller, P.; Kratz, K-L, Heating in the Accreted Neutron Star Ocean: Implications for Superburst Ignition, Astrophys. J., 662, 1188-1197 (2007)
[179] Gusakov, Me; Yakovlev, Dg; Haensel, P.; Gnedin, Oy, Direct Urca process in a neutron star mantle, Astron. Astrophys., 421, 1143-1148 (2004)
[180] Haberl, F.; Turolla, R.; De Vries, Cp; Zane, S.; Vink, J.; Méndez, M.; Verbunt, F., Evidence for precession of the isolated neutron star RX J0720.4-3125, Astron. Astrophys., 451, L17-L21 (2006)
[181] Haensel, P.; Kaminker, Ad; Yakovlev, Dg, Electron neutrino-antineutrino bremsstrahlung in a liquid phase of neutron star crusts, Astron. Astrophys., 314, 328-340 (2003)
[182] Haensel, P.; Levenfish, Kp; Yakovlev, Dg, Bulk viscosity in superfluid neutron star cores. III. Effects of Σ^− hyperons, Astron. Astrophys., 381, 1080-1089 (2002)
[183] Haensel, P.; Pichon, B., Experimental nuclear masses and the ground state of cold dense matter, Astron. Astrophys., 283, 313-318 (1994)
[184] Haensel, P.; Potekhin, Ay; Yakovlev, Dg, Neutron Stars 1: Equation of State and Structure (2007), New York, U.S.A.: Springer, New York, U.S.A.
[185] Haensel, P.; Zdunik, Jl, Equation of state and structure of the crust of an accreting neutron star, Astron. Astrophys., 229, 117-122 (1990)
[186] Haensel, P.; Zdunik, Jl, Non-equilibrium processes in the crust of an accreting neutron star, Astron. Astrophys., 227, 431-436 (1990)
[187] Haensel, P.; Zdunik, Jl, Nuclear composition and heating in accreting neutron-star crusts, Astron. Astrophys., 404, L33-L36 (2003)
[188] Haensel, P.; Zdunik, Jl, Models of crustal heating in accreting neutron stars, Astron. Astrophys., 480, 459-464 (2008)
[189] Harding, D.; Guyer, Ra; Greenstein, G., Superfluidity in neutron stars. III. Relaxation processes between the superfluid and the crust, Astrophys. J., 222, 991-1005 (1978)
[190] Hartle, Jb, Slowly Rotating Relativistic Stars. I. Equations of Structure, Astrophys. J., 150, 1005-1029 (1967)
[191] Hashimoto, M.; Seki, H.; Yamada, M., Shape of Nuclei in the Crust of Neutron Star, Prog. Theor. Phys., 71, 320-326 (1984)
[192] Haskell, B.; Jones, Di; Andersson, N., Mountains on neutron stars: accreted versus non-accreted crusts, Mon. Not. R. Astron. Soc., 373, 1423-1439 (2006)
[193] Haskell, B.; Samuelsson, L.; Glampedakis, K.; Andersson, N., Modelling magnetically deformed neutron stars, Mon. Not. R. Astron. Soc., 385, 531-542 (2008)
[194] Heinz, S.; Schulz, Ns; Brandt, Wn; Galloway, Dk, Evidence of a Parsec-Scale X-Ray Jet from the Accreting Neutron Star Circinus X-1, Astrophys. J., 663, L93-L96 (2007)
[195] Hessels, Jwt; Ransom, Sm; Stairs, Ih; Freire, Pcc; Kaspi, Vm; Camilo, F., A Radio Pulsar Spinning at 716 Hz, Science, 311, 1901-1904 (2006)
[196] Heyl, Js, r-Modes on Rapidly Rotating, Relativistic Stars. I. Do Type I Bursts Excite Modes in the Neutron Star Ocean?, Astrophys. J., 600, 939-945 (2004)
[197] Hillebrandt, W.; Wolff, Rg; Nomoto, K., Supernova explosions of massive stars. The mass range 8 to 10 M_⊙, Astron. Astrophys., 133, 175-184 (1984)
[198] Hirasawa, M.; Shibazaki, N., Vortex Configurations, Oscillations, and Pinning in Neutron Star Crusts, Astrophys. J., 563, 267-275 (2001)
[199] Hobbs, G.; Lyne, Ag; Joshi, Bc; Kramer, M.; Stairs, Ih; Camilo, F.; Manchester, Rn; D’Amico, N.; Possenti, A.; Kaspi, Vm, A very large glitch in PSR J1806-2125, Mon. Not. R. Astron. Soc., 333, L7-L10 (2002)
[200] Horner, H., Scattering Function S(Q,ω) for Solid Helium, Phys. Rev. Lett., 29, 556-558 (1972)
[201] Horowitz, Cj; Pérez-García, Ma; Berry, Dk; Piekarewicz, J., Dynamical response of the nuclear ‘pasta’ in neutron star crusts, Phys. Rev. C, 72, 035801 (2005)
[202] Hund, F., Materie unter sehr hohen Drucken und Temperaturen, Ergeb. Exakten Naturwiss., 15, 189-228 (1936) · Zbl 0015.37704
[203] Hund, F.; Riffert, H.; Müther, H.; Herold, H.; Ruder, H., Matter under very high pressures and temperatures, Matter at High Densities in Astrophysics: Compact Stars and the Equation of State, 217-257 (1996), Berlin, Germany; New York, U.S.A.: Springer, Berlin, Germany; New York, U.S.A.
[204] Hüttner, B., A new method for the determination of the optical mass of electrons in metals, J. Phys.: Cond. Matter, 8, 11041-11052 (1996)
[205] Iida, K.; Sato, K., Spin-down of Neutron Stars and Compositional Transitions in the Cold Crustal Matter, Astrophys. J., 477, 294 (1997)
[206] Iida, K.; Watanabe, G.; Sato, K., Formation of Nuclear ‘Pasta’ in Cold Neutron Star Matter, Prog. Theor. Phys., 106, 551-559 (2001)
[207] Iida, K.; Watanabe, G.; Sato, K., Formation of Nuclear ‘Pasta’ in Cold Neutron Star Matter, Prog. Theor. Phys., 110, 847-848 (2003)
[208] INFN, “The Virgo Project”, project homepage. URL (cited on 20 August 2007): http://www.virgo.infn.it/. 12.5
[209] Inman, Cl; Ruderman, Ma, Plasma Neutrino Emission from a Hot, Dense Electron Gas, Astrophys. J., 140, 1025 (1964)
[210] Institut für Theoretische Physik, “Matthias Hempel’s homepage”, personal homepage. URL (cited on 20 August 2007): http://th.physik.uni-frankfurt.de/∼hempel/. 5.1
[211] Institute of Astronomy and Astrophysics, Université Libre de Bruxelles, “BRUSLIB: the Brussels Nuclear Library for Astrophysics Applications”, online resource. URL (cited on 20 August 2007): http://www.astro.ulb.ac.be/Html/bruslib.html. 3.1, 3.1
[212] Instituto de Astronomía UNAM, “Neutron Star Theory Group at UNAM”, project homepage. URL (cited on 20 August 2007): http://www.astroscu.unam.mx/neutrones/. 12.2
[213] In’T Zand, Jjm; Cornelisse, R.; Kuulkers, E.; Heise, J.; Kuiper, L.; Bazzano, A.; Cocchi, M.; Muller, Jm; Natalucci, L.; Smith, Mjs; Ubertini, P., The first outburst of SAX J1808.4-3658 revisited, Astron. Astrophys., 372, 916-921 (2001)
[214] Israel, Gl; Belloni, T.; Stella, L.; Rephaeli, Y.; Gruber, De; Casella, P.; Dall’Osso, S.; Rea, N.; Persic, M.; Rothschild, Re, The Discovery of Rapid X-Ray Oscillations in the Tail of the SGR 1806-20 Hyperflare, Astrophys. J., 628, L53-L56 (2005)
[215] Itoh, N.; Adachi, T.; Nakagawa, M.; Kohyama, Y.; Munakata, H., Neutrino Energy Loss in Stellar Interiors. III. Pair, Photo-, Plasma, and Bremsstrahlung Processes, Astrophys. J., 339, 354-364 (1989)
[216] Itoh, N.; Adachi, T.; Nakagawa, M.; Kohyama, Y.; Munakata, H., Erratum: Neutrino Energy Loss in Stellar Interiors. III. Pair, Photo-, Plasma, and Bremsstrahlung Processes, Astrophys. J., 360, 741 (1993)
[217] Itoh, N.; Hayashi, H.; Nishikawa, A.; Kohyama, Y., Neutrino Energy Loss in Stellar Interiors. VII. Pair, Photo-, Plasma, Bremsstrahlung, and Recombination Neutrino Processes, Astrophys. J. Suppl. Ser., 102, 411-424 (1996)
[218] Jaikumar, P.; Meyer, Bs; Otsuki, K.; Ouyed, R., Nucleosynthesis in neutron-rich ejecta from quark-novae, Astron. Astrophys., 471, 227-236 (2007)
[219] Janka, H-T; Langanke, K.; Marek, A.; Martínez-Pinedo, G.; Müller, B., Theory of core-collapse supernovae, Phys. Rep., 442, 38-74 (2007)
[220] Jaranowski, P.; Królak, A.; Schutz, Bf, Data analysis of gravitational-wave signals from spinning neutron stars: The signal and its detection, Phys. Rev. D, 58, 6, 063001 (1998)
[221] Jog, Cj; Smith, Ra, Mixed lattice phases in cold dense matter, Astrophys. J., 253, 839-841 (1982)
[222] Jones, Pb, Rotation of the neutron-drip superfluid in pulsars: temperature-dependence of the resistive force, Mon. Not. R. Astron. Soc., 244, 675-679 (1990) · Zbl 0697.76132
[223] Jones, Pb, Rotation of the neutron-drip superfluid in pulsars: the Kelvin phonon contribution to dissipation, Mon. Not. R. Astron. Soc., 257, 501-506 (1992)
[224] Jones, Pb, Amorphous and Heterogeneous Phase of Neutron Star Matter, Phys. Rev. Lett., 83, 3589-3592 (1999)
[225] Jones, Pb, First-principles point-defect calculations for solid neutron star matter, Mon. Not. R. Astron. Soc., 321, 167-175 (2001)
[226] Jönsson, B.; Lindman, B.; Holmberg, K.; Kronberg, B., Surfactants and Polymers in Aqueous Solution (1998), Chichester, U.K.; New York, U.S.A.: Wiley, Chichester, U.K.; New York, U.S.A.
[227] Kaaret, P.; Prieskorn, Z.; Zand, Jjmi; Brandt, S.; Lund, N.; Mereghetti, S.; Götz, D.; Kuulkers, E.; Tomsick, Ja, Evidence of 1122 Hz X-Ray Burst Oscillations from the Neutron Star X-Ray Transient XTE J1739-285, Astrophys. J., 657, L97-L100 (2007)
[228] Kaminker, Ad; Gnedin, Oy; Yakovlev, Dg; Amsterdamski, P.; Haensel, P., Neutrino emissivity from e^−e^+ annihilation in a strong magnetic field: hot, nondegenerate plasma, Phys. Rev. D, 46, 4133-4139 (1992)
[229] Kaminker, Ad; Haensel, P.; Yakovlev, Dg, Nucleon superfluidity vs. observations of cooling neutron stars, Astron. Astrophys., 373, L17-L20 (2001)
[230] Kaminker, Ad; Levenfish, Kp; Yakovlev, Dg; Amsterdamski, P.; Haensel, P., Neutrino emissivity from e^− synchrotron and e^−e^+ annihilation processes in a strong magnetic field: general formalism and nonrelativistic limit, Phys. Rev. D, 46, 3256-3264 (1992)
[231] Kaminker, Ad; Pethick, Cj; Potekhin, Ay; Thorsson, V.; Yakovlev, Dg, Neutrino-pair bremsstrahlung by electrons in neutron star crusts, Astron. Astrophys., 343, 1009-1024 (1999)
[232] Kaspi, Vm; Gavriil, Fp, A Second Glitch from the “Anomalous” X-Ray Pulsar 1RXS J170849.0-4000910, Astrophys. J., 596, L71-L74 (2003)
[233] Kaspi, Vm; Gavriil, Fp; Woods, Pm; Jensen, Jb; Roberts, Mse; Chakrabarty, D., A Major Soft Gamma Repeater-like Outburst and Rotation Glitch in the No-longer-so-anomalous X-Ray Pulsar 1E 2259+586, Astrophys. J., 588, L93-L96 (2003)
[234] Kaspi, Vm; Lackey, Jr; Chakrabarty, D., A Glitch in an Anomalous X-Ray Pulsar, Astrophys. J., 537, L31-L34 (2000)
[235] Ketterle, W., Bose-Einstein condensation in dilute atomic gases: atomic physics meets condensed matter physics, Physica B, 280, 11-19 (2000)
[236] Khalatnikov, Im, An Introduction to the Theory of Superfluidity (1989), Redwood City, U.S.A.: Addison-Wesley, Redwood City, U.S.A.
[237] Khan, E.; Sandulescu, N.; Giai, Nv, Collective excitations in the inner crust of neutron stars: Supergiant resonances, Phys. Rev. C, 71, 042801 (2005)
[238] Kinney, Jb; Mendell, G., r-modes in accreting neutron stars with magnetoviscous boundary layers, Phys. Rev. D, 67, 2, 024032 (2003)
[239] Kirszhnits, Da, Superfluidity and superconductivity of neutron pulsar stars, Radiophys. Quantum Electron., 13, 1424-1427 (1970)
[240] Kirzhnits, Da, Superconductivity in systems with arbitrary interaction sign, J. Exp. Theor. Phys. Lett., 9, 360-364 (1969)
[241] Kittel, C., Introduction to Solid State Physics (1996), New York, U.S.A.: Wiley, New York, U.S.A.
[242] Kohanoff, J.; Hansen, J-P, Statistical properties of the dense hydrogen plasma: An ab initio molecular dynamics investigation, Phys. Rev. E, 54, 768-781 (1996)
[243] Kohn, W.; Sham, Lj, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 140, 1133-1138 (1965)
[244] Kokkotas, K.D., and Schmidt, B., “Quasi-Normal Modes of Stars and Black Holes”, Living Rev. Relativity, 2, lrr-1999-2, (1999). URL (cited on 2 October 2007): http://www.livingreviews.org/lrr-1999-2. 12.5.2
[245] Kolomeitseiv, Ee; Voskresensky, Dn, Neutrino emission due to Cooper-pair recombination in neutron stars reexamined, Phys. Rev. C, 77, 065808 (2008)
[246] Landau, Ld, On the Theory of Superfluidity of Helium II, J. Phys. (Moscow), 6, 91-92 (1941)
[247] Landau, Ld, The Theory of Superfluidity of Helium II, J. Phys. (Moscow), 5, 71-90 (1941)
[248] Landau, Ld; Lifshitz, Em, The Classical Theory of Fields (1975), Oxford, U.K.; New York, U.S.A.: Pergamon Press, Oxford, U.K.; New York, U.S.A.
[249] Landau, Ld; Lifshitz, Em, Theory of Elasticity (1986), Oxford, U.K.: Pergamon Press, Oxford, U.K.
[250] Langanke, K., Neutrino nucleus reactions in core-collapse supernovae, Prog. Part. Nucl. Phys., 57, 324-333 (2006)
[251] Larson, Mb; Link, B., Simulations of glitches in isolated pulsars, Mon. Not. R. Astron. Soc., 333, 613-622 (2002)
[252] Lassaut, M.; Flocard, H.; Bonche, P.; Heenen, Ph; Suraud, E., Equation of state of hot dense matter, Astron. Astrophys., 183, L3-L6 (1987)
[253] Lattimer, Jm; Mackie, F.; Ravenhall, Dg; Schramm, Dn, The decompression of cold neutron star matter, Astrophys. J., 213, 225-233 (1977)
[254] Lattimer, Jm; Prakash, M.; Pethick, Cj; Haensel, P., Direct URCA process in neutron stars, Phys. Rev. Lett., 66, 2701-2704 (1991)
[255] Lattimer, Jm; Swesty, Fd, A generalized equation of state for hot, dense matter, Nucl. Phys. A, 535, 331-376 (1991)
[256] Lattimer, Jm; Van Riper, Ka; Prakash, M.; Prakash, M., Rapid cooling and the structure of neutron stars, Astrophys. J., 425, 802-813 (1994)
[257] Lee, U., Axisymmetric oscillations of magnetic neutron stars, Mon. Not. R. Astron. Soc., 374, 1015-1029 (2007)
[258] Legut, D.; Friák, M.; Sob, M., Why Is Polonium Simple Cubic and So Highly Anisotropic?, Phys. Rev. Lett., 99, 016402 (2007)
[259] Leinson, Lb, Neutrino Emission from the Bubble Phase of Stellar Nuclear Matter, Astrophys. J., 415, 759 (1993)
[260] Leinson, Lb, Neutrino Pair Emission from the Inner Crust of a Neutron Star, Space Sci. Rev., 74, 481-484 (1995)
[261] Levenfish, Kp; Haensel, P., Nucleon superfluidity versus thermal states of isolated and transiently accreting neutron stars, Astrophys. Space Sci., 308, 457-465 (2007)
[262] Levin, Y., On the theory of magnetar QPOs, Mon. Not. R. Astron. Soc., 377, 159-167 (2007)
[263] Levin, Y.; Ushomirsky, G., Crust-core coupling and r-mode damping in neutron stars: a toy model, Mon. Not. R. Astron. Soc., 324, 917-922 (2001)
[264] Lindblom, L.; Owen, Bj, Effect of hyperon bulk viscosity on neutron star r-modes, Phys. Rev. D, 65, 063006 (2002)
[265] Lindblom, L.; Owen, Bj; Ushomirsky, G., Effect of a neutron-star crust on the r-mode instability, Phys. Rev. D, 62, 084030 (2000)
[266] Link, B.; Cutler, C., Vortex unpinning in precessing neutron stars, Mon. Not. R. Astron. Soc., 336, 211-216 (2002)
[267] Link, B.; Epstein, Ri, Thermally Driven Neutron Star Glitches, Astrophys. J., 457, 844 (1996)
[268] Link, B.; Epstein, Ri; Baym, G., Superfluid vortex creep and rotational dynamics of neutron stars, Astrophys. J., 403, 285-302 (1993)
[269] Link, B.; Epstein, Ri; Lattimer, Jm, Pulsar Constraints on Neutron Star Structure and Equation of State, Phys. Rev. Lett., 83, 3362-3365 (1999)
[270] L’Observatoire de Paris, “LORENE: Langage Objet pour la RElativité NumériquE”, project homepage. URL (cited on 10 September 2007): http://www.lorene.obspm.fr/. 6.3
[271] Lombardo, U.; Schulze, H-J; Blaschke, D.; Glendenning, Nk; Sedrakian, A., Superfluidity in Neutron Star Matter, Physics of Neutron Star Interiors, 30-53 (2001), Berlin, Germany; New York, U.S.A.: Springer, Berlin, Germany; New York, U.S.A.
[272] London, F., The-phenomenon of liquid helium and the Bose-Einstein degeneracy, Nature, 141, 643-644 (1938)
[273] Lorenz, Cp, Dense Matter and the Compressible Liquid Drop Model (1991), Urbana-Champaign, U.S.A.: University of Illinois at Urbana-Champaign, Urbana-Champaign, U.S.A.
[274] Lorenz, Cp; Ravenhall, Dg; Pethick, Cj, Neutron star crusts, Phys. Rev. Lett., 70, 379-382 (1993)
[275] Lyne, Ag; Graham-Smith, F., Pulsar Astronomy (1998), Cambridge, U.K.; New York, U.S.A.: Cambridge University Press, Cambridge, U.K.; New York, U.S.A.
[276] Lyne, Ag; Shemar, Sl; Smith, Fg, Statistical studies of pulsar glitches, Mon. Not. R. Astron. Soc., 315, 534-542 (2000)
[277] Mackie, Fd; Baym, G., Compressible liquid drop nuclear model and mass formula, Nucl. Phys. A, 285, 332-348 (1977)
[278] Magierski, P.; Heenen, P-H, Structure of the inner crust of neutron stars: Crystal lattice or disordered phase?, Phys. Rev. C, 65, 045804 (2002)
[279] Markwardt, C.B., Miller, J.M., and Wijnands, R., “Sax J1808.4-3658”, IAU Circ. 2002(7993), (2002). Related online version (cited on 23 June 2008): http://www.cfa.harvard.edu/iauc/07900/07993.html. 12.7.1
[280] Martínez-Pinedo, G.; Liebendörfer, M.; Frekers, D., Nuclear input for core-collapse models, Nucl. Phys. A, 777, 395-423 (2006)
[281] Maruyama, T., Tatsumi, T., Endo, T., and Chiba, S., “Pasta structures in compact stars”, (2006). URL (cited on 2 October 2007): http://arXiv.org/abs/nucl-th/0605075. 3.3
[282] Maruyama, T.; Tatsumi, T.; Voskresensky, Dn; Tanigawa, T.; Chiba, S., Nuclear ‘pasta’ structures and the charge screening effect, Phys. Rev. C, 72, 015802 (2005)
[283] Matsuo, M., Spatial structure of neutron Cooper pair in low density uniform matter, Phys. Rev. C, 73, 044309 (2006)
[284] Matsuzaki, M., Ordered bicontinuous double-diamond morphology in subsaturation nuclear matter, Phys. Rev. C, 73, 028801 (2006)
[285] Mcdermott, Pn; Van Horn, M.; Hansen, Cj, Nonradial oscillations of neutron stars, Astrophys. J., 325, 725-748 (1988)
[286] Mckenna, J.; Lyne, Ag, PSR1737−30 and period discontinuities in young pulsars, Nature, 343, 349-350 (1990)
[287] Medin, Z.; Lai, D., Condensed surfaces of magnetic neutron stars, thermal surface emission, and particle acceleration above pulsar polar caps, Mon. Not. R. Astron. Soc., 382, 1833-1852 (2007)
[288] Melatos, A.; Peralta, C., Superfluid Turbulence and Pulsar Glitch Statistics, Astrophys. J., 662, L99-L102 (2007)
[289] Mendell, G., Magnetic effects on the viscous boundary layer damping of the r-modes in neutron stars, Phys. Rev. D, 64, 044009 (2001)
[290] Messios, N.; Papadopoulos, Db; Stergioulas, N., Torsional oscillations of magnetized relativistic stars, Mon. Not. R. Astron. Soc., 328, 1161-1168 (2001)
[291] Migdal, Ab, Superfluidity and the moments of inertia of nuclei, Nucl. Phys., 13, 655 (1959) · Zbl 0096.24002
[292] Miralda-Escudé, J.; Paczyński, B.; Haensel, P., Thermal structure of accreting neutron stars and strange stars, Astrophys. J., 362, 572-583 (1990)
[293] Mochizuki, Y.; Izuyama, T.; Tanihata, I., Dynamics of Exotic Nuclear Rod Formation for the Origin of Neutron Star Glitches, Astrophys. J., 521, 281-296 (1999)
[294] Monrozeau, C.; Margueron, J.; Sandulescu, N., Nuclear superfluidity and cooling time of neutron star crusts, Phys. Rev. C, 75, 6, 065807 (2007)
[295] Montani, F.; May, C.; Müther, H., Mean field and pairing properties in the crust of neutron stars, Phys. Rev. C, 69, 065801 (2004)
[296] Morii, M.; Kawai, N.; Shibazaki, N., A Pulse Profile Change Possibly Associated with a Glitch in the Anomalous X-Ray Pulsar 4U 0142+61, Astrophys. J., 622, 544-548 (2005)
[297] Morsch, O.; Oberthaler, M., Dynamics of Bose-Einstein condensates in optical lattices, Rev. Mod. Phys., 78, 179-215 (2006)
[298] Motokowa, M., Physics in high magnetic fields, Rep. Prog. Phys., 67, 1995-2052 (2004)
[299] MPI for Gravitational Physics (Albert Einstein Institute), “GEO600: The German-British Gravitational Wave Detector”, project homepage. URL (cited on 20 August 2007): http://geo600.aei.mpg.de/. 12.5
[300] Nandkumar, R.; Pethick, Cj, Transport coefficients of dense matter in the liquid metal regime, Mon. Not. R. Astron. Soc., 209, 511-524 (1984)
[301] National Astronomical Observatory, “TAMA300: The 300m Laser Interferometer Gravitational Wave Antenna”, project homepage. URL (cited on 20 August 2007): http://tamago.mtk.nao.ac.jp/. 12.5
[302] Negele, Jw; Vautherin, D., Density-Matrix Expansion for an Effective Nuclear Hamiltonian, Phys. Rev. C, 5, 1472-1493 (1972)
[303] Negele, Jw; Vautherin, D., Neutron star matter at sub-nuclear densities, Nucl. Phys. A, 207, 298-320 (1973)
[304] Newton, Wg; Stone, Jr; Mezzacappa, A., From microscales to macroscales in 3D: selfconsistent equation of state for supernova and neutron star models, J. Phys.: Conf. Ser., 46, 408-412 (2006)
[305] Nobel Foundation, “The Nobel Prize in Physics 1974”, institutional homepage, (1974). URL (cited on 6 September 2007): http://nobelprize.org/nobelprizes/physics/laureates/1974/. 12.4
[306] Nobel Foundation, “The Nobel Prize in Physics 1993”, institutional homepage, (1993). URL (cited on 6 September 2007): http://nobelprize.org/nobelprizes/physics/laureates/1993/. 12.5
[307] Nozières, P., Is the Roton in Superfluid^4He the Ghost of a Bragg Spot?, J. Low Temp. Phys., 137, 45-67 (2004)
[308] Ogasawara, R.; Sato, K., Nuclei in Neutrino-Degenerate Dense Matter. I — Cold Case —, Prog. Theor. Phys., 68, 222-235 (1982)
[309] Ogata, S.; Ichimaru, S., First-principles calculations of shear moduli for Monte Carlo-simulated Coulomb solids, Phys. Rev. A, 42, 4867-4870 (1990)
[310] Onsager, L., Statistical hydrodynamics, Nuovo Cimento, 6, 249 (1949)
[311] Onsi, M.; Dutta, Ak; Chatri, H.; Goriely, S.; Chamel, N.; Pearson, Jm, Semiclassical equation of state and specific-heat expressions with proton shell corrections for the inner crust of a neutron star, Phys. Rev. C, 77, 065805 (2008)
[312] Onsi, M.; Przysiezniak, H.; Pearson, Jm, Equation of state of stellar nuclear matter in the temperature-dependent extended Thomas-Fermi formalism, Phys. Rev. C, 55, 3139-3148 (1997)
[313] Oppenheimer, Jr; Volkoff, Gm, On Massive Neutron Cores, Phys. Rev., 55, 374-381 (1939) · Zbl 0020.28501
[314] Oyamatsu, K., Nuclear shapes in the inner crust of a neutron star, Nucl. Phys. A, 561, 431-452 (1993)
[315] Oyamatsu, K.; Hashimoto, M.; Yamada, M., Further Study of the Nuclear Shape in High-Density Matter, Prog. Theor. Phys., 72, 373-375 (1984)
[316] Oyamatsu, K.; Yamada, M., Shell energies of non-spherical nuclei in the inner crust of a neutron star, Nucl. Phys. A, 578, 181-203 (1994)
[317] Packard, Re, Pulsar speedups related to metastability of the superfluid neutron-star core, Phys. Rev. Lett., 28, 1080-1082 (1972)
[318] Page, D.; Geppert, U.; Weber, F., The cooling of compact stars, Nucl. Phys. A, 777, 497-530 (2006)
[319] Pandharipande, Vr; Pines, D.; Smith, Ra, Neutron star structure: theory, observation, and speculation, Astrophys. J., 208, 550-566 (1976)
[320] Pandharipande, Vr; Ravenhall, Dg; Soyeur, M.; Flocard, H.; Tamain, B.; Porneuf, M., Hot Nuclear Matter, Nuclear Matter and Heavy Ion Collisions, 103 (1989), New York, U.S.A.: Plenum Press, New York, U.S.A.
[321] Papenbrock, T.; Bertsch, Gf, Pairing in low-density Fermi gases, Phys. Rev. C, 59, 2052-2055 (1999)
[322] Penrose, O.; Onsager, L., Bose-Einstein Condensation and Liquid Helium, Phys. Rev., 104, 576-584 (1956) · Zbl 0071.44701
[323] Peralta, C.; Melatos, A.; Giacobello, M.; Ooi, A., Global Three-dimensional Flow of a Neutron Superfluid in a Spherical Shell in a Neutron Star, Astrophys. J., 635, 1224-1232 (2005)
[324] Peralta, C.; Melatos, A.; Giacobello, M.; Ooi, A., Transitions between Turbulent and Laminar Superfluid Vorticity States in the Outer Core of a Neutron Star, Astrophys. J., 651, 1079-1091 (2006)
[325] Pethick, Cj; Potekhin, Ay, Liquid crystals in the mantles of neutron stars, Phys. Lett. B, 427, 7-12 (1998)
[326] Pethick, Cj; Ravenhall, Dg, Matter at large neutron excess and the physics of neutron-star crusts, Annu. Rev. Nucl. Part. Sci., 45, 429-484 (1995)
[327] Pethick, Cj; Ravenhall, Dg; Lattimer, Jm, Effect of nuclear curvature energy on the transition between nuclei and bubbles in dense matter, Phys. Lett. B, 128, 137-140 (1983)
[328] Piro, Al, Shear Waves and Giant-Flare Oscillations from Soft Gamma-Ray Repeaters, Astrophys. J. Lett., 634, L153-L156 (2005)
[329] Piro, Al; Bildsten, L., Neutron Star Crustal Interface Waves, Astrophys. J., 619, 1054-1063 (2005)
[330] Piro, Al; Bildsten, L., Surface Modes on Bursting Neutron Stars and X-Ray Burst Oscillations, Astrophys. J., 629, 438-450 (2005)
[331] Piro, Al; Bildsten, L., The Energy Dependence of Neutron Star Surface Modes and X-Ray Burst Oscillations, Astrophys. J., 638, 968-937 (2006)
[332] Pizzochero, Pm; Barranco, F.; Vigezzi, E.; Broglia, Ra, Nuclear Impurities in the Superfluid Crust of Neutron Stars: Quantum Calculation and Observable Effects on the Cooling, Astrophys. J., 569, 381-394 (2002)
[333] Pizzochero, Pm; Viverit, L.; Broglia, Ra, Vortex-Nucleus Interaction and Pinning Forces in Neutron Stars, Phys. Rev. Lett., 79, 3347-3350 (1997)
[334] Pomeau, Y.; Rica, S., Dynamics of a model of supersolid, Phys. Rev. Lett., 72, 2426-2429 (1994)
[335] Pontecorvo, Bm, Zh. Eksp. Teor. Fiz., 36, 1615 (1959)
[336] Pontecorvo, Bm, Sov. Phys. JETP, 9, 1148 (1959)
[337] Postnov, K.A., and Yungelson, L.R., “The Evolution of Compact Binary Star Systems”, Living Rev. Relativity, 9, lrr-2006-6, (2006). URL (cited on 2 October 2007): http://www.livingreviews.org/lrr-2006-6. 12.3 · Zbl 1255.85002
[338] Potekhin, Ay, Electron conduction in magnetized neutron star envelopes, Astron. Astrophys., 351, 787-797 (1999)
[339] Potekhin, Ay; Baiko, Da; Haensel, P.; Yakovlev, Dg, Transport properties of degenerate electrons in neutron star envelopes and white dwarf cores, Astron. Astrophys., 346, 345-353 (1999)
[340] Prakash, M.; Lattimer, Jm; Ainsworth, Tl, Equation of state and the maximum mass of neutron stars, Phys. Rev. Lett., 61, 2518-2521 (1988)
[341] Prigogine, I., Introduction to thermodynamics of irreversible processes (1960), New York, U.S.A.: Interscience Publishers, New York, U.S.A. · Zbl 0115.23101
[342] Prix, R., Variational description of multifluid hydrodynamics: Uncharged fluids, Phys. Rev. D, 69, 043001 (2004)
[343] Prix, R., Variational description of multifluid hydrodynamics: Coupling to gauge fields, Phys. Rev. D, 71, 083006 (2005)
[344] Ravenhall, Dg; Bennett, Cd; Pethick, Cj, Nuclear surface energy and neutron-star matter, Phys. Rev. Lett., 28, 978-981 (1972)
[345] Ravenhall, Dg; Pethick, Cj; Wilson, Jr, Structure of Matter below Nuclear Saturation Density, Phys. Rev. Lett., 50, 2066-2069 (1983)
[346] Ring, P.; Schuck, P., The Nuclear Many-Body Problem (1980), Berlin, Germany; New York, U.S.A.: Springer, Berlin, Germany; New York, U.S.A.
[347] Ritus, Vi, Photoproduction of neutrinos of electrons and the neutrino radiation from stars, Zh. Eksp. Teor. Fiz., 41, 1285-1293 (1961)
[348] Ritus, Vi, Photoproduction of neutrinos of electrons and the neutrino radiation from stars, Sov. Phys. JETP, 14, 915 (1961)
[349] Ruderman, M., Neutron star quakes and pulsar periods, Nature, 223, 597 (1969)
[350] Ruderman, M., Pulsars: Structure and Dynamics, Annu. Rev. Astron. Astrophys., 10, 427 (1972)
[351] Ruderman, M., Crust-breaking by neutron superfluids and the VELA pulsar glitches, Astrophys. J., 203, 213-222 (1976)
[352] Ruderman, M., Neutron star crustal plate tectonics. I. Magnetic dipole evolution in millisecond pulsars and low-mass X-ray binaries, Astrophys. J., 366, 261-269 (1991)
[353] Ruderman, M., Neutron star crustal plate tectonics. III. Cracking, glitches, and gamma-ray bursts, Astrophys. J., 382, 587-593 (1991)
[354] Ruderman, M.; Zhu, T.; Chen, K., Neutron Star Magnetic Field Evolution, Crust Movement, and Glitches, Astrophys. J., 492, 267 (1998)
[355] Ruderman, M.; Zhu, T.; Chen, K., Neutron Star Magnetic Field Evolution, Crust Movement, and Glitches: Erratum, Astrophys. J., 502, 1027 (1998)
[356] Ruderman, R., Neutron star crustal plate tectonics. II. Evolution of radio pulsar magnetic fields, Astrophys. J., 382, 576-586 (1991)
[357] Rüster, Sb; Hempel, M.; Schaffner-Bielich, J., Outer crust of nonaccreting cold neutron stars, Phys. Rev. C, 73, 035804 (2006)
[358] Rutledge, Re; Bildsten, L.; Brown, Ef; Pavlov, Gg; Zavlin, Ve; Ushomirsky, G., Crustal Emission and the Quiescent Spectrum of the Neutron Star in KS 1731-260, Astrophys. J., 580, 413-422 (2002)
[359] Samuelsson, L.; Andersson, N., Neutron star asteroseismology. Axial crust oscillations in the Cowling approximation, Mon. Not. R. Astron. Soc., 374, 256-268 (2007)
[360] Sandulescu, N., Nuclear superfluidity and specific heat in the inner crust of neutron stars, Phys. Rev. C, 70, 025801 (2004)
[361] Sandulescu, N.; Van Giai, N.; Liotta, Rj, Superfluid properties of the inner crust of neutron stars, Phys. Rev. C, 69, 045802 (2004)
[362] Sato, K., Nuclear Compositions in the Inner Crust of Neutron Stars, Prog. Theor. Phys., 62, 957-968 (1979)
[363] Sauls, Ja; Ögelman, H.; Van Den Heuvel, Epj, Superfluidity in the Interiors of Neutrons Stars, Timing Neutron Stars, 441-490 (1989), Dordrecht, Netherlands; Boston, U.S.A.: Kluwer Academic Press, Dordrecht, Netherlands; Boston, U.S.A.
[364] Schatz, H.; Aprahamian, A.; Barnard, V.; Bildsten, L.; Cumming, A.; Ouellette, M.; Rauscher, T.; Thielemann, F-K; Wiescher, M., End Point of the rp Process on Accreting Neutron Stars, Phys. Rev. Lett., 86, 3471-3474 (2001)
[365] Schatz, H.; Bildsten, L.; Cumming, A.; Wiescher, M., The Rapid Proton Process Ashes from Stable Nuclear Burning on an Accreting Neutron Star, Astrophys. J., 524, 1014-1029 (1999)
[366] Schwenk, A.; Friman, B.; Brown, Ge, Renormalization group approach to neutron matter: quasiparticle interactions, superfluid gaps and the equation of state, Nucl. Phys. A, 713, 191-216 (2003) · Zbl 0999.81548
[367] Sedrakian, A.; Clark, Jw; Sedrakian, A.; Clark, Jw; Alford, M., Nuclear Superconductivity in Compact Stars: BCS Theory and Beyond, Pairing in Fermionic Systems: Basic Concepts and Modern Applications, 135-174 (2006), Singapore; Hackensack, U.S.A.: World Scientific, Singapore; Hackensack, U.S.A.
[368] Sedrakian, A.; Muether, H.; Schuck, P., Vertex renormalization of weak interactions and Cooper-pair breaking in cooling compact stars, Phys. Rev. C, 76, 055805 (2007)
[369] Sedrakian, Ad; Sedrakian, Dm, Superfluid Core Rotation in Pulsars. I. Vortex Cluster Dynamics, Astrophys. J., 447, 305 (1995)
[370] Sedrakian, Ad; Sedrakian, Dm; Cordes, Jm; Terzian, Y., Superfluid Core Rotation in Pulsars. II. Postjump Relaxations, Astrophys. J., 447, 324 (1995)
[371] Shabanova, Tv; Lyne, Ag; Urama, Jo, Evidence for Free Precession in the Pulsar B1642-03, Astrophys. J., 552, 321-325 (2001)
[372] Shaham, J., Free precession of neutron stars: Role of possible vortex pinning, Astrophys. J., 214, 251-260 (1977)
[373] Shapiro, Sl; Teukolsky, Sa, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (1983), New York, U.S.A.: Wiley, New York, U.S.A.
[374] Shen, H.; Toki, H.; Oyamatsu, K.; Sumiyoshi, K., Relativistic equation of state of nuclear matter for supernova and neutron star, Nucl. Phys. A, 637, 435-450 (1998)
[375] Shen, H.; Toki, H.; Oyamatsu, K.; Sumiyoshi, K., Relativistic Equation of State of Nuclear Matter for Supernova Explosion, Prog. Theor. Phys., 100, 1013-1031 (1998)
[376] Shimizu, K.; Kimura, T.; Furomoto, S.; Takeda, K.; Kontani, K.; Onuki, Y.; Amaya, K., Superconductivity in the non-magnetic state of iron under pressure, Nature, 412, 316-318 (2001)
[377] Shternin, Ps, Shear viscosity of degenerate electron matter, J. Phys. A, 41, 205501 (2008) · Zbl 1140.85308
[378] Shternin, Ps; Yakovlev, Dg, Electron thermal conductivity owing to collisions between degenerate electrons, Phys. Rev. D, 74, 043004 (2006)
[379] Shternin, Ps; Yakovlev, Dg; Haensel, P.; Potekhin, Ay, Neutron star cooling after deep crustal heating in the X-ray transient KS 1731-260, Mon. Not. R. Astron. Soc., 382, L43-L47 (2007)
[380] Slater, Jc, A Simplification of the Hartree-Fock Method, Phys. Rev., 81, 385-390 (1951) · Zbl 0042.23202
[381] Slaus, I.; Akaishi, Y.; Tanaka, H., Neutron-neutron effective range parameters, Phys. Rep., 173, 257-300 (1989)
[382] Smoluchowski, R., Frequency of pulsar starquakes, Phys. Rev. Lett., 24, 923-925 (1970)
[383] Sonin, Eb, Vortex oscillations and hydrodynamics of rotating superfluids, Rev. Mod. Phys., 59, 87-155 (1987)
[384] Sonoda, H.; Watanabe, G.; Sato, K.; Takiwaki, T.; Yasuoka, K.; Ebisuzaki, T., Impact of nuclear ‘pasta’ on neutrino transport in collapsing stellar cores, Phys. Rev. C, 75, 042801 (2007)
[385] Sotani, H.; Kokkotas, Kd; Stergioulas, N., Torsional oscillations of relativistic stars with dipole magnetic fields, Mon. Not. R. Astron. Soc., 375, 261-277 (2007)
[386] Spitkovsky, A.; Levin, Y.; Ushomirsky, G., Propagation of Thermonuclear Flames on Rapidly Rotating Neutron Stars: Extreme Weather during Type I X-Ray Bursts, Astrophys. J., 566, 1018-1038 (2002)
[387] Stairs, Ih; Lyne, Ag; Shemar, Sl, Evidence for free precession in a pulsar, Nature, 406, 484-486 (2000)
[388] Stergioulas, N., “Rapidly Rotating Neutron Star (RNS code)”, project homepage, University of Wisconsin-Milwaukee Center for Gravitation and Cosmology. URL (cited on 10 September 2007): http://www.gravity.phys.uwm.edu/rns/. 6.3
[389] Stergioulas, N., “Rotating Stars in Relativity”, Living Rev. Relativity, 6, lrr-2003-3, (2003). URL (cited on 2 October 2007): http://www.livingreviews.org/lrr-2003-3. 6.3 · Zbl 1068.83508
[390] Sterne, Te, The equilibrium theory of the abundance of the elements: a statistical investigation of assemblies in equilibrium in which transmutations occur, Mon. Not. R. Astron. Soc., 93, 736-766 (1933) · Zbl 0008.03901
[391] Stone, Jr; Reinhard, P-G, The Skyrme interaction in finite nuclei and nuclear matter, Prog. Part. Nucl. Phys., 58, 587-657 (2007)
[392] Strohmayer, T.; Bildsten, L.; Lewin, W.; Van Der Klis, M., New views of thermonuclear bursts, Compact Stellar X-Ray Sources, 113-156 (2006), Cambridge, U.K.: Cambridge University Press, Cambridge, U.K.
[393] Strohmayer, T.; Van Horn, Hm; Ogata, S.; Iyetomi, H.; Ichimaru, S., The shear modulus of the neutron star crust and nonradial oscillations of neutron stars, Astrophys. J., 375, 679-686 (1991)
[394] Strohmayer, Te; Markwardt, Cb, Evidence for a Millisecond Pulsar in 4U 1636-53 during a Superburst, Astrophys. J., 577, 337-345 (2002)
[395] Strohmayer, Te; Markwardt, Cb; Swank, Jh; In’T Zand, J., X-Ray Bursts from the Accreting Millisecond Pulsar XTE J1814-338, Astrophys. J., 596, L67-L70 (2003)
[396] Strohmayer, Te; Watts, Al, Discovery of Fast X-Ray Oscillations during the 1998 Giant Flare from SGR 1900+14, Astrophys. J., 632, L111-L114 (2005)
[397] Strohmayer, Te; Watts, Al, The 2004 Hyperflare from SGR 1806-20: Further Evidence for Global Torsional Vibrations, Astrophys. J., 653, 593-601 (2006)
[398] Strohmayer, Te; Zhang, W.; Swank, Jh, 363 Hz Oscillations during the Rising Phase of Bursts from 4U 1728-34: Evidence for Rotational Modulation, Astrophys. J. Lett., 487, L77-L80 (1997)
[399] Strohmayer, Te; Zhang, W.; Swank, Jh; Smale, A.; Titarchuk, L.; Day, C.; Lee, U., Millisecond X-Ray Variability from an Accreting Neutron Star System, Astrophys. J. Lett., 469, L9 (1996)
[400] Sumiyoshi, K.; Oyamatsu, K.; Toki, H., Neutron star profiles in the relativistic Brueckner-Hartree-Fock theory, Nucl. Phys. A, 595, 327-345 (1995)
[401] Sumiyoshi, K.; Yamada, S.; Suzuki, H.; Hillebrandt, W., The fate of a neutron star just below the minimum mass: does it explode?, Astron. Astrophys., 334, 159-168 (1998)
[402] Sumiyoshi, K.; Yamada, S.; Suzuki, H.; Shen, H.; Chiba, S.; Toki, H., Postbounce Evolution of Core-Collapse Supernovae: Long-Term Effects of the Equation of State, Astrophys. J., 629, 922-932 (2005)
[403] Tilley, Dr; Tilley, J., Superfluidity and Superconductivity (1974), New York, U.S.A.: Wiley, New York, U.S.A.
[404] Tisza, L., Transport Phenomena in Helium II, Nature, 141, 913 (1938)
[405] Tkachenko, Vk, On vortex lattices, Zh. Eksp. Teor. Fiz., 49, 1875 (1965)
[406] Tkachenko, Vk, On vortex lattices, Sov. Phys. JETP, 22, 1282-1286 (1966)
[407] Tolman, Rc, Static Solutions of Einstein’s Field Equations for Spheres of Fluid, Phys. Rev., 55, 364-373 (1939) · JFM 65.1048.02
[408] Tsakadze, Ds; Tsakadze, Sd, Simulation of pulsar behavior in a low-temperature laboratory (Review), Astrofizika, 15, 533-547 (1979)
[409] Tsakadze, Js; Tsakadze, Sj, Properties of slowly rotating helium II and the superfluidity of pulsars, J. Low Temp. Phys., 39, 649-688 (1980)
[410] Vartanyan, Yl; Ovakimova, Nk, Cold evaporation of neutrons from nuclei in super-dense matter, Biurakanskaia Obs. Soobshcheniia, 49, 87-95 (1976)
[411] Vavoulidis, M.; Stavridis, A.; Kokkotas, Kd; Beyer, H., Torsional oscillations of slowly rotating relativistic stars, Mon. Not. R. Astron. Soc., 377, 1553-1556 (2007)
[412] Ventura, J.; Potekhin, A.; Kouveliotou, C.; Ventura, J.; Van Den Heuvel, E., Neutron Star Envelopes and Thermal Radiation from the Magnetic Surface, The Neutron Star — Black Hole Connection, 393-414 (2001), Dordrecht, Netherlands; Boston, U.S.A.: Kluwer Academic Publishers, Dordrecht, Netherlands; Boston, U.S.A.
[413] Vigezzi, E.; Barranco, F.; Broglia, Ra; Coló, G.; Gori, G.; Ramponi, F., Pairing correlations in the inner crust of neutron stars, Nucl. Phys. A, 752, 600-603 (2005)
[414] Villain, L.; Haensel, P., Non-equilibrium beta processes in superfluid neutron star cores, Astron. Astrophys., 444, 539-548 (2005)
[415] Vinen, Wf, The Detection of Single Quanta of Circulation in Liquid Helium II, Proc. R. Soc. London, Ser. A, 260, 218-236 (1961)
[416] Wang, N.; Manchester, Rn; Pace, Rt; Bailes, M.; Kaspi, Vm; Stappers, Bw; Lyne, Ag, Glitches in southern pulsars, Mon. Not. R. Astron. Soc., 317, 843-860 (2000)
[417] Watanabe, G., “Understanding nuclear ‘pasta’: current status and future prospects”, (2006). URL (cited on 2 October 2007): http://arXiv.org/abs/nucl-th/0610116. 3.3
[418] Watanabe, G.; Iida, K., Electron screening in the liquid-gas mixed phases of nuclear matter, Phys. Rev. C, 68, 045801 (2003)
[419] Watanabe, G.; Iida, K.; Sato, K., Thermodynamic properties of nuclear ‘pasta’ in neutron star crusts, Nucl. Phys. A, 676, 455-473 (2000)
[420] Watanabe, G.; Iida, K.; Sato, K., Erratum to: I. ‘Thermodynamic properties of nuclear ‘pasta’ in neutron star crusts’ [Nucl. Phys. A676 (2000) 455], Nucl. Phys. A, 726, 357-365 (2003)
[421] Watts, Al; Strohmayer, Te, Detection with RHESSI of High-Frequency X-Ray Oscillations in the Tail of the 2004 Hyperflare from SGR 1806-20, Astrophys. J., 637, L117−L120 (2006)
[422] Wigner, E.; Seitz, F., On the Constitution of Metallic Sodium, Phys. Rev., 43, 804-810 (1933) · Zbl 0007.04104
[423] Williams, Ga; Packard, Re, Photographs of Quantized Vortex Lines in Rotating He II, Phys. Rev. Lett., 33, 280-283 (1974)
[424] Wolf, Ra, Some Effects of the Strong Interactions on the Properties of Neutron-Star Matter, Astrophys. J., 145, 834 (1966)
[425] Wong, T.; Backer, Dc; Lyne, Ag, Observations of a Series of Six Recent Glitches in the Crab Pulsar, Astrophys. J., 548, 447-459 (2001)
[426] Woods, Pm; Thompson, C.; Lewin, W.; Van Der Klis, M., Soft gamma repeaters and anomalous X-ray pulsars: magnetar candidates, Compact Stellar X-Ray Sources, 547-586 (2006), Cambridge, U.K.: Cambridge University Press, Cambridge, U.K.
[427] Yakovlev, Dg; Gasques, L.; Wiescher, M., Pycnonuclear burning of^34Ne in accreting neutron stars, Mon. Not. R. Astron. Soc., 371, 1322-1326 (2006)
[428] Yakovlev, Dg; Kaminker, Ad; Gnedin, Oy; Haensel, P., Neutrino emission from neutron stars, Phys. Rep., 354, 1-155 (2001)
[429] Yakovlev, Dg; Levenfish, Kp; Haensel, P., Thermal state of transiently accreting neutron stars, Astron. Astrophys., 407, 265-271 (2003) · Zbl 1060.85506
[430] Yakovlev, Dg; Levenfish, Kp; Potekhin, Ay; Gnedin, Oy; Chabrier, G., Thermal states of coldest and hottest neutron stars in soft X-ray transients, Astron. Astrophys., 417, 169-179 (2004)
[431] Yakovlev, Dg; Pethick, Cj, Neutron Star Cooling, Annu. Rev. Astron. Astrophys., 42, 169-210 (2004)
[432] Yarmchuk, Ej; Gordon, Mjv; Packard, Re, Observation of Stationary Vortex Arrays in Rotating Superfluid Helium, Phys. Rev. Lett., 43, 214-217 (1979)
[433] Yu, Y.; Bulgac, A., Spatial Structure of a Vortex in Low Density Neutron Matter, Phys. Rev. Lett., 90, 161101 (2003)
[434] Zeilinger, A.; Shull, Cg; Horne, Ma; Finkelstein, Kd, Effective mass of neutrons diffracting in crystals, Phys. Rev. Lett., 57, 3089-3092 (1986)
[435] Ziman, Jm, Electrons and Phonons (2001), Oxford, U.K.; New York, U.S.A.: Clarendon Press / Oxford University Press, Oxford, U.K.; New York, U.S.A. · Zbl 0983.82002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.