×

Plastic deformation instabilities: Lambert solutions of Mecking-Lücke equation with delay. (English) Zbl 1141.74016

Summary: We study the instabilities during plastic deformation at constant cross-head velocity. The deformation is supposed to be controlled by the emission of dislocation loops. Under some hypothesis analogous to the Mecking-Lücke relation, we derive a linear delay differential-difference equation. The “retarded” time term appears as the phase shift between the time of loop nucleation and the time at which the mean strain is recorded. We show the existence of the solution of strain equation. We give an analytic approach of solution using Lambert functions. The stability is also investigated close to the stable solution using a linearization of the number of nucleated loops functions.

MSC:

74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74H55 Stability of dynamical problems in solid mechanics
39A11 Stability of difference equations (MSC2000)

Software:

LambertW
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Y. Brechet and F. Louchet, “Localization of plastic deformation,” Solid State Phenomena, vol. 3-4, pp. 347-356, 1988.
[2] P. Penning, “Mathematics of the Portevin-Le Châtelier effect,” Acta Metallurgica, vol. 20, no. 10, pp. 1169-1175, 1972. · doi:10.1016/0001-6160(72)90165-4
[3] A. Portevin and F. Le Châtelier, “Heat treatment of aluminum-copper alloys,” Transactions of the American Society of Steel Treating, vol. 5, pp. 457-478, 1924.
[4] Z. Kovács, J. Lendvai, and G. Vörös, “Localized deformation bands in Portevin-Le Châtelier plastic instabilities at a constant stress rate,” Materials Science and Engineering A, vol. 279, no. 1-2, pp. 179-184, 2000.
[5] E. Rizzi and P. Hähner, “On the Portevin-Le Châtelier effect: theoretical modeling- and numerical results,” International Journal of Plasticity, vol. 20, no. 1, pp. 121-165, 2004. · Zbl 1134.74336 · doi:10.1016/S0749-6419(03)00035-4
[6] V. V. Demirski and S. N. Komnik, “On the kinetics of stress jumps during plastic deformation of crystals,” Acta Metallurgica, vol. 30, no. 12, pp. 2227-2232, 1982. · doi:10.1016/0001-6160(82)90143-2
[7] S. Graff, S. Forest, J.-L. Strudel, C. Prioul, P. Pilvin, and J.-L. Béchade, “Finite element simulations of dynamic strain ageing effects at V-notches and crack tips,” Scripta Materialia, vol. 52, no. 11, pp. 1181-1186, 2005. · doi:10.1016/j.scriptamat.2005.02.007
[8] S. Graff, S. Forest, J.-L. Strudel, C. Prioul, P. Pilvin, and J.-L. Béchade, “Strain localization phenomena associated with static and dynamic strain ageing in notched specimens: experiments and finite element simulations,” Materials Science and Engineering A, vol. 387-389, pp. 181-185, 2004. · doi:10.1016/j.msea.2004.02.083
[9] H. P. Stüwe and L. S. Tóth, “Plastic instability and Lüders bands in the tensile test: the role of crystal orientation,” Materials Science and Engineering A, vol. 358, no. 1-2, pp. 17-25, 2003. · doi:10.1016/S0921-5093(03)00273-9
[10] S.-Y. Yang and W. Tong, “Interaction between dislocations and alloying elements and its implication on crystal plasticity of aluminum alloys,” Materials Science and Engineering A, vol. 309-310, pp. 300-303, 2001. · doi:10.1016/S0921-5093(00)01675-0
[11] F. Louchet and Y. Brechet, “Dislocation patterning in uniaxial deformation,” Solid State Phenomena, vol. 3-4, pp. 335-346, 1988.
[12] M.-C. Miguel, A. Vespignani, S. Zapperi, J. Weiss, and J.-R. Grasso, “Complexity in dislocation dynamics: model,” Materials Science and Engineering A, vol. 309-310, pp. 324-327, 2001. · doi:10.1016/S0921-5093(00)01681-6
[13] J. Grilhé, N. Junqua, F. Tranchant, and J. Vergnol, “Model for instabilities during plastic deformation at constant cross-head velocity,” Journal de Physique, vol. 45, no. 5, pp. 939-943, 1984.
[14] H. Mecking and K. Lücke, “A new aspect of the theory of flow stress of metals,” Scripta Metallurgica, vol. 4, no. 6, pp. 427-432, 1970. · doi:10.1016/0036-9748(70)90078-5
[15] R. Bellman and K. L. Cooke, Differential-Difference Equations, Mathematical in Sciences and Engineering, Academic Press, New York, NY, USA, 1963. · Zbl 0105.06402
[16] J. K. Hale and S. M. V. Lunel, Introduction to Functional-Differential Equations, vol. 99 of Applied Mathematical Sciences, Springer, New York, NY, USA, 1993. · Zbl 0787.34002
[17] F. M. Asl and A. G. Ulsoy, “Analysis of a system of linear delay differential equations,” Journal of Dynamic Systems, Measurement and Control, vol. 125, no. 2, pp. 215-223, 2003. · doi:10.1115/1.1568121
[18] S. R. Valluri, D. J. Jeffrey, and R. M. Corless, “Some applications of the Lambert W function to physics,” Canadian Journal of Physics, vol. 78, no. 9, pp. 823-831, 2000. · doi:10.1139/cjp-78-9-823
[19] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert W function,” Advances in Computational Mathematics, vol. 5, no. 4, pp. 329-359, 1996. · Zbl 0863.65008 · doi:10.1007/BF02124750
[20] R. M. Corless and D. J. Jeffrey, “The wright \omega function,” in Artificial Intelligence, Automated Reasoning, and Symbolic Computation, J. Calmet, B. Benhamou, O. Caprotti, L. Henocque, and V. Sorge, Eds., vol. 2385 of Lecture Notes in Comput. Sci., pp. 76-89, Springer, Berlin, Germany, 2002. · Zbl 1072.68568
[21] D. J. Jeffrey, R. M. Corless, D. E. G. Hare, and D. E. Knuth, “Sur l’inversion de y\alpha ey au moyen des nombres de Stirling associés,” Comptes Rendus de l’Académie des Sciences. Série I. Mathématique, vol. 320, no. 12, pp. 1449-1452, 1995. · Zbl 0846.05002
[22] C. T. H. Baker, C. A. H. Paul, and D. R. Willé, “Issues in the numerical solution of evolutionary delay differential equations,” Advances in Computational Mathematics, vol. 3, no. 3, pp. 171-196, 1995. · Zbl 0832.65064 · doi:10.1007/BF02988625
[23] R. M. Corless, G. H. Gonnet, D. E. G. Hare, and D. J. Jeffrey, “Lambert’s W function in Maple,” Maple Technical Newsletter, vol. 9, pp. 12-23, 1993.
[24] A. Coujou and J. Vergnol, 1985, private communication.
[25] F. Tranchant, J. Vergnol, M. F. Denanot, and J. Grilhé, “Mechanical twinning mechanisms in Cu-Al crystals with very low stacking fault energy,” Scripta Metallurgica, vol. 21, no. 3, pp. 269-272, 1987. · doi:10.1016/0036-9748(87)90211-0
[26] F. Tranchant, J. Vergnol, and P. Franciosi, “On the twinning initiation criterion in Cu-Al alpha single crystals-I: experimental and numerical analysis of slip and dislocation patterns up to the onset of twinning,” Acta Metallurgica et Materialia, vol. 41, no. 5, pp. 1531-1541, 1993. · doi:10.1016/0956-7151(93)90261-P
[27] F. Tranchant, J. Vergnol, and J. Grilhé, “Etude du maclage dans la deformation plastique de solutions solides Cu-Al monocristallines a moyenne energie de defaut,” Scripta Metallurgica, vol. 17, no. 2, pp. 175-178, 1983. · doi:10.1016/0036-9748(83)90094-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.