×

Topological classification of conformal actions on \(pq\)-hyperelliptic Riemann surfaces. (English) Zbl 1135.30317

Summary: A compact Riemann surface \(X\) of genus \(g>1\) is said to be \(p\)-hyperelliptic if \(X\) admits a conformal involution \(\rho \), for which \(X/\rho \) is an orbifold of genus \(p\). If in addition \(X\) is \(q\)-hyperelliptic, then we say that \(X\) is \(pq\)-hyperelliptic. Here we study conformal actions on \(pq\)-hyperelliptic Riemann surfaces with central \(p\)- and \(q\)-hyperelliptic involutions.

MSC:

30F10 Compact Riemann surfaces and uniformization
57M05 Fundamental group, presentations, free differential calculus
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] S. A. Broughton, “The equisymmetric stratification of the moduli space and the Krull dimension of mapping class groups,” Topology and Its Applications, vol. 37, no. 2, pp. 101-113, 1990. · Zbl 0747.32017 · doi:10.1016/0166-8641(90)90055-7
[2] S. A. Broughton, “Classifying finite group actions on surfaces of low genus,” Journal of Pure and Applied Algebra, vol. 69, no. 3, pp. 233-270, 1991. · Zbl 0722.57005 · doi:10.1016/0022-4049(91)90021-S
[3] O. V. Bogopol/skiĭ, “Classifying the actions of finite groups on orientable surfaces of genus 4,” Siberian Advances in Mathematics, vol. 7, no. 4, pp. 9-38, 1997. · Zbl 0926.57011
[4] E. Tyszkowska, “Topological classification of conformal actions on elliptic-hyperelliptic Riemann surfaces,” Journal of Algebra, vol. 288, no. 2, pp. 345-363, 2005. · Zbl 1078.30037 · doi:10.1016/j.jalgebra.2005.03.024
[5] E. Tyszkowska, “Topological classification of conformal actions on 2-hyperelliptic Riemann surfaces,” Bulletin of the Institute of Mathematics. Academia Sinica, vol. 33, no. 4, pp. 345-368, 2005. · Zbl 1087.30039
[6] E. Bujalance, J. M. Gamboa, and G. Gromadzki, “The full automorphism groups of hyperelliptic Riemann surfaces,” Manuscripta Mathematica, vol. 79, no. 3-4, pp. 267-282, 1993. · Zbl 0788.30031 · doi:10.1007/BF02568345
[7] Anthony Weaver, “Hyperelliptic surfaces and their moduli,” Geometriae Dedicata, vol. 103, no. 1, pp. 69-87, 2004. · Zbl 1047.32012 · doi:10.1023/B:GEOM.0000013807.79944.33
[8] H. M. Farkas and I. Kra, Riemann Surfaces, vol. 71 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 1980. · Zbl 0475.30001
[9] E. Tyszkowska, “On pq-hyperelliptic Riemann surfaces,” Colloquium Mathematicum, vol. 103, no. 1, pp. 115-120, 2005. · Zbl 1080.30037 · doi:10.4064/cm103-1-12
[10] H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Band 14, Springer, Berlin, Germany, 2nd edition, 1965. · Zbl 0133.28002
[11] D. Singerman, “Finitely maximal Fuchsian groups,” Journal of the London Mathematical Society. Second Series, vol. 6, pp. 29-38, 1972. · Zbl 0251.20052 · doi:10.1112/jlms/s2-6.1.29
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.