×

Analytic black hole perturbation approach to gravitational radiation. (English) Zbl 1070.83019

Summary: We review the analytic methods used to perform the post-Newtonian expansion of gravitational waves induced by a particle orbiting a massive, compact body, based on black hole perturbation theory. There exist two different methods of performing the post-Newtonian expansion. Both are based on the Teukolsky equation. In one method, the Teukolsky equation is transformed into a Regge-Wheeler type equation that reduces to the standard Klein-Gordon equation in the flat-space limit, while in the other method (which was introduced by Mano, Suzuki, and Takasugi relatively recently), the Teukolsky equation is used directly in its original form. The former’s advantage is that it is intuitively easy to understand how various curved space effects come into play. However, it becomes increasingly complicated when one goes to higher and higher post-Newtonian orders. In contrast, the latter’s advantage is that a systematic calculation to higher post-Newtonian orders can be implemented relatively easily, but otherwise, it is so mathematical that it is hard to understand the interplay of higher order terms. In this paper, we review both methods so that their pros and cons may be seen clearly. We also review some results of calculations of gravitational radiation emitted by a particle orbiting a black hole.

MSC:

83C57 Black holes
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
PDFBibTeX XMLCite
Full Text: DOI arXiv EuDML Link

References:

[1] Abramowitz, M. and Stegun, I.A., eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, (Dover, Mineola, NY, 1972). [Google Books]. (Cited on pages 20 and 31.) · Zbl 0543.33001
[2] Ando, M., et al., “DECIGO and DECIGO pathfinder”, Class. Quantum Grav., 27, 084010, (2010). [DOI]. (Cited on page 5.) · doi:10.1088/0264-9381/27/8/084010
[3] Ando, M., et al., “Stable Operation of a 300-m Laser Interferometer with Sufficient Sensitivity to Detect Gravitational-Wave Events within Our Galaxy”, Phys. Rev. Lett., 86, 3950-3954, (2001). [DOI]. (Cited on page 5.) · doi:10.1103/PhysRevLett.86.3950
[4] Arun, K.G., Blanchet, L., Iyer, B.R. and Qusailah, M.S., “The 2.5PN gravitational wave polarizations from inspiralling compact binaries in circular orbits”, Class. Quantum Grav., 21, 3771-3801, (2004). [DOI]. (Cited on page 40.) · Zbl 1075.83015 · doi:10.1088/0264-9381/21/15/010
[5] Arun, K.G., Blanchet, L., Iyer, B.R. and Qusailah, M.S., “The 2.5PN gravitational wave polarizations from inspiralling compact binaries in circular orbits”, Class. Quantum Grav., 22, 3115-3117, (2005). [DOI]. (Cited on page 40.) · Zbl 1129.83304 · doi:10.1088/0264-9381/22/14/C01
[6] Bardeen, J.M. and Press, W.H., “Radiation fields in the Schwarzschild background”, J. Math. Phys., .14, 7-19, (1973). [DOI]. (Cited on page 8.) · doi:10.1063/1.1666175
[7] Blanchet, L., “Energy losses by gravitational radiation in inspiraling compact binaries to 5/2 post-Newtonian order”, Phys. Rev. D, 54, 1417-1438, (1996). [DOI]. (Cited on pages 6, 7, and 20.) · doi:10.1103/PhysRevD.54.1417
[8] Blanchet, L., “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries”, Living Rev. Relativity, 9, lrr-2006-4, (2006). URL (accessed 31 August 2010): http://www.livingreviews.org/lrr-2006-4. (Cited on page 7.) · Zbl 1316.83004 · doi:10.12942/lrr-2006-4
[9] Blanchet, L.; Blanchet, L. (ed.); Spallicci, A. (ed.); Whiting, B. (ed.), Post-Newtonian theory and the two-body problem, Proceedings of the CNRS School on Mass held in Orleans, France, 23-25 June 2008, Berlin
[10] Blanchet, L., Damour, T. and Esposito-Farese, G., “Dimensional regularization of the third post-Newtonian dynamics of point particles in harmonic coordinates”, Phys. Rev. D, 69, 124007, 1-51, (2004). [DOI]. (Cited on pages 6 and 7.) · doi:10.1103/PhysRevD.69.124007
[11] Blanchet, L., Damour, T., Esposito-Farese, G. and Iyer, B.R., “Gravitational radiation from inspiralling compact binaries completed at the third post-Newtonian order”, Phys. Rev. Lett., 93, 091101, 1-4, (2004). [DOI]. (Cited on page 7.) · doi:10.1103/PhysRevLett.93.091101
[12] Blanchet, L., Damour, T. and Iyer, BR., “Gravitational waves from inspiralling compact binaries: Energy loss and waveform to second-post-Newtonian order”, Phys. Rev. D, 51, 5360-5386, (1995). [DOI]. (Cited on pages 6, 7, and 20.) · doi:10.1103/PhysRevD.51.5360
[13] Blanchet, L., Damour, T., Iyer, BR., Will, C.M. and Wiseman, A.G., “Gravitational-Radiation Damping of Compact Binary Systems to Second Post-Newtonian Order”, Phys. Rev. Lett., 74, 3515-3518, (1995) [DOI], [gr-gc/9501027]. (Cited on page 38.) · doi:10.1103/PhysRevLett.74.3515
[14] Blanchet, L. and Faye, G., “General relativistic dynamics of compact binaries at the third post-Newtonian order”, Phys. Rev. D, 63, 062005, 1-43, (2001). [DOI]. (Cited on page 7.) · doi:10.1103/PhysRevD.63.062005
[15] Blanchet, L., Faye, G., Iyer, B.R. and Joguet, B., “Gravitational-wave inspiral of compact binary systems to 7/2 post-Newtonian order”, Phys. Rev. D, 65, 061501(R), 1-5, (2002). [DOI]. (Cited on page 7.)
[16] Blanchet, L., Faye, G., Iyer, B.R. and Joguet, B., “Erratum: Gravitational-wave inspiral of compact binary systems to 7/2 post-Newtonian order”, Phys. Rev. D, 71, 129902(E), 1-2, (2005). [DOI]. (Cited on page 7.)
[17] Blanchet, L., Faye, G., Iyer, B.R. and Sinha, S., “The third post-Newtonian gravitational wave polarizations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits”, Class. Quantum Grav., 25, 165003, 1-44, (2008) [DOI]. (Cited on page 40.) · Zbl 1147.83300 · doi:10.1088/0264-9381/25/16/165003
[18] Blanchet, L., Iyer, B.R. and Joguet, B., “Gravitational waves from inspiralling compact binaries: Energy loss to third post-Newtonian order”, Phys. Rev. D, 65, 064005, 1-41, (2002). [DOI]. (Cited on page 7.)
[19] Blanchet, L., Iyer, B.R. and Joguet, B., “Erratum: Gravitational waves from inspiralling compact binaries: Energy loss to third post-Newtonian order”, Phys. Rev. D, 71, 129903(E), 1-1, (2005). [DOI]. (Cited on page 7.)
[20] Breuer, RA, Gravitational Perturbation Theory and Synchrotron Radiation, 44 (1975), Berlin
[21] Chandrasekhar, S., “On the equations governing the perturbations of the Schwarzschild black hole”, Proc. R. Soc. London, Ser. A, 343, 289-298, (1975). (Cited on pages 8, 16, and 17.)
[22] Chandrasekhar, S., The Mathematical Theory of Black Holes, 69 (1983), Oxford · Zbl 0511.53076
[23] Chrzanowski, P.L., “Vector potential and metric perturbations of a rotating black hole”, Phys. Rev. D, 11, 2042-2062, (1975). [DOI]. (Cited on page 8.) · doi:10.1103/PhysRevD.11.2042
[24] Cutler, C., Finn, L.S., Poisson, E. and Sussman, G.J., “Gravitational radiation from a particle in circular orbit around a black hole. II. Numerical results for the nonrotating case”, Phys. Rev. D, 47, 1511-1518, (1993). [DOI]. (Cited on page 9.) · doi:10.1103/PhysRevD.47.1511
[25] Damour, T. and Deruelle, N., “Lagrangien generalise du systeme de deux masses ponctuelles, a l’approximation post-post-newtonienne de la relativite generale”, C. R. Acad. Sci. Ser. 11, 293, 537-540, (1981). (Cited on page 6.)
[26] Damour, T. and Deruelle, N., “Radiation reaction and angular momentum loss in small angle gravitational scattering”, Phys. Lett. A, 87, 81-84, (1981). [DOI]. (Cited on page 6.) · doi:10.1016/0375-9601(81)90567-3
[27] Damour, T., Jaranowski, P. and Schiffer, G., “Dimensional regularization of the gravitational interaction of point masses”, Phys. Lett. B, 513, 147-155, (2001). [DOI]. (Cited on pages 6 and 7.) · Zbl 0969.83506 · doi:10.1016/S0370-2693(01)00642-6
[28] de Andrade, V.C., Blanchet, L. and Faye, G., “Third post-Newtonian dynamics of compact binaries: Noetherian conserved quantities and equivalence between the harmonic-coordinate and ADM-Hamiltonian formalisms”, Class. Quantum Grav., 18, 753-778, (2001). [DOI]. (Cited on page 7.) · Zbl 0973.83016 · doi:10.1088/0264-9381/18/5/301
[29] Dixon, WG; Ehlers, J. (ed.), Extended bodies in general relativity: Their description and motion, Proceedings of the International School of Physics ‘Enrico Fermi’, Course 67, Varenna on Lake Como, Villa Monastero, Italy, 28 June-10 July, 1976, Amsterdam
[30] Drasco, S., Flanagan, E.E. and Hughes, S. A., “Computing inspirals in Kerr in the adiabatic regime: I. The scalar case”, Class. Quantum Grav., 22, S801-S846, (2005). [DOI], [arXiv:grgc/0505075]. (Cited on pages 10 and 45.) · Zbl 1080.83007 · doi:10.1088/0264-9381/22/15/011
[31] Drasco, S. and Hughes, S. A., “Gravitational wave snapshots of generic extreme mass ratio inspirals”, Phys. Rev. D, 73, 024027, 1-26, (2006). [DOI], [arXiv:gr-qc/0509101]. (Cited on page 45.) · doi:10.1103/PhysRevD.73.024027
[32] Einstein, A., Infeld, L. and Hoffmann, B., “The Gravitational Equations and the Problem of Motion”, Ann. Math., 39, 65-100, (1938). [DOI]. (Cited on page 6.) · Zbl 0018.28103 · doi:10.2307/1968714
[33] Epstein, R. and Wagoner, R.V., “Post-Newtonian generation of gravitational waves”, Astrophys. J., 197, 717-723, (1975). [DOI]. (Cited on page 6.) · doi:10.1086/153561
[34] Erdelyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F.G., eds., Higher Transcendental Functions, Vol. 1,, (Krieger, Malabar, FL, 1981). (Cited on page 32.) · Zbl 0052.29502
[35] Fackerell, E.D. and Crossman, R.G., “Spin-weighted angular spheroidal functions”, J. Math. Phys., 18, 1849-1854, (1977). [DOI]. (Cited on page 26.) · Zbl 0364.33012 · doi:10.1063/1.523499
[36] Folkner, WM; Seidel, DJ, Gravitational Wave Missions from LISA to Big Bang Observer (2005)
[37] Fujita, R., Gravitational waves from a particle orbiting a Kerr black hole, Ph.D. Thesis, (Osaka University, Toyonaka, 2006). (Cited on page 36.)
[38] Fujita, R., Hikida, W. and Tagoshi, H., “An Efficient Numerical Method for Computing Gravitational Waves Induced by a Particle Moving on Eccentric Inclined Orbits around a Kerr Black Hole”, Prog. Theor. Phys., 121, 843-874, (2009). [DOI]. (Cited on page 37.) · Zbl 1171.83317 · doi:10.1143/PTP.121.843
[39] Fujita, R. and Iyer, B.R., “Spherical harmonic modes of 5.5 post-Newtonian gravitational wave polarisations and associated factorised resummed waveforms for a particle in circular orbit around a Schwarzschild black hole”, arXiv e-print, (2010). [arXiv:1005.2266]. (Cited on pages 9, 39, and 40.) · Zbl 1316.83004
[40] Fujita, R. and Tagoshi, H., “New Numerical Methods to Evaluate Homogeneous Solutions of the Teukolsky Equation”, Prog. Theor. Phys., 112, 415-450, (2004). [DOI]. (Cited on page 36.) · Zbl 1064.85006 · doi:10.1143/PTP.112.415
[41] Fujita, R. and Tagoshi, H., “New Numerical Methods to Evaluate Homogeneous Solutions of the Teukolsky Equation. II - Solutions of the Continued Fraction Equation -”, Prog. Theor. Phys., 113, 1165-1182, (2005). [DOI]. (Cited on page 36.) · Zbl 1078.85004 · doi:10.1143/PTP.113.1165
[42] Futamase, T., “Strong-field point-particle limit and the equations of motion in the binary pulsar”, Phys. Rev. D, 36, 321-329, (1987). [DOI]. (Cited on page 6.) · doi:10.1103/PhysRevD.36.321
[43] Futamase, T. and Itoh, Y., “The Post-Newtonian Approximation for Relativistic Compact Binaries”, Living Rev. Relativity, 10, lrr-2007-2, (2007). URL (accessed 6 August 2010): http://www.livingreviews.org/lrr-2007-2. (Cited on page 7.) · Zbl 1255.83005 · doi:10.12942/lrr-2007-2
[44] Futamase, T. and Schutz, B.F., “Newtonian and post-Newtonian approximation are asymptotic to general relativity”, Phys. Rev. D, 28, 2363-2372, (1983). [DOI]. (Cited on page 6.) · doi:10.1103/PhysRevD.28.2363
[45] Futamase, T. and Schutz, B.F., “Gravitational radiation and the validity of the far-zone quadrupole formula in the Newtonian limit of general relativity”, Phys. Rev. D, 32, 2557-2565, (1985). [DOI]. (Cited on page 6.) · doi:10.1103/PhysRevD.32.2557
[46] Gal’tsov, D.V., “Radiation reaction in the Kerr gravitational field”, J. Phys. A, 15, 3737-3749, (1982). [DOI]. (Cited on pages 9 and 45.) · doi:10.1088/0305-4470/15/12/025
[47] Gal’tsov, D.V., Matiukhin, A.A. and Petukhov, V.I., “Relativistic corrections to the gravitational radiation of a binary system and the fine structure of the spectrum”, Phys. Lett. A, 77, 387-390, (1980). [DOI]. (Cited on page 9.) · doi:10.1016/0375-9601(80)90728-8
[48] Ganz, K., Hikida, W., Nakano, H., Sago, N. and Tanaka, T., “Adiabatic Evolution of Three ‘Constants’ of Motion for Greatly Inclined Orbits in Kerr Spacetime”, Prog. Theor. Phys., 117, 1041-1066, (2007). [DOI]. (Cited on pages 10, 45, 48, 49, and 50.) · Zbl 1131.82309 · doi:10.1143/PTP.117.1041
[49] Gautschi, W., “Computational Aspects of Three-Term Recurrence Relations”, SIAM Rev., 9, 24-82, (1967). [DOI]. (Cited on page 29.) · Zbl 0168.15004 · doi:10.1137/1009002
[50] “‘GE0600: The German-British Gravitational Wave Detector”, project homepage, MPI for Gravitational Physics (Albert Einstein Institute). URL (accessed 09 August 2010): http://geo600.aei.mpg.de/. (Cited on page 5.)
[51] Grishchuk, L.P. and Kopeikin, S.M., “The motion of a pair of gravitating bodies, including the radiation reaction force”, Sov. Astron. Lett., 9, 230-232, (1983). (Cited on page 7.)
[52] Hikida, W., Jhingan, S., Nakano, H., Sago, N., Sasaki, M. and Tanaka, T., “A new analytical method for self-force regularization III - eccentric orbit -”, unknown status. (Cited on page 37.) · Zbl 1075.83007
[53] Hughes, S.A., Drasco, S., Flanagan, E.E. and Franklin, J., “Gravitational Radiation Reaction and Inspiral Waveforms in the Adiabatic Limit”, Phys. Rev. Lett., 94, 221101, 1-12, (2005). [DOI], [arXiv:gr-gc/0504015]. (Cited on page 45.)
[54] Itoh, Y., “Equation of motion for relativistic compact binaries with the strong field point particle limit: Third post-Newtonian order”, Phys. Rev. D, 69, 064018, 1-43, (2004) [DOI]. (Cited on pages 6 and 7.) · doi:10.1103/PhysRevD.69.064018
[55] Itoh, Y., “Third-and-a-half order post-Newtonian equations of motion for relativistic compact binaries using the strong field point particle limit”, Phys. Rev. D, 80, 124003, 1-17, (2009). [DOI]. (Cited on page 7.)
[56] Itoh, Y. and Futamase, T., “New derivation of a third post-Newtonian equation of motion for relativistic compact binaries without ambiguity”, Phys. Rev. D, 68, 121501(R), 1-5, (2003). [DOI]. (Cited on pages 6 and 7.) · doi:10.1103/PhysRevD.68.121501
[57] Itoh, Y., Futamase, T. and Asada, H., “Equation of motion for relativistic compact binaries with the strong field point particle limit: Formulation, the first post-Newtonian and multipole terms”, Phys. Rev. D, 62, 064002, 1-12, (2000). [DOI]. (Cited on page 6.) · doi:10.1103/PhysRevD.62.064002
[58] Itoh, Y., Futamase, T. and Asada, H., “Equation of motion for relativistic compact binaries with the strong field point particle limit: The second and half post-Newtonian order”, Phys. Rev. D, 63, 064038, 1-21, (2001). [DOI]. (Cited on page 6.) · doi:10.1103/PhysRevD.63.064038
[59] Jaranowski, P. and Schiffer, G., “Third post-Newtonian higher order ADM Hamilton dynamics for two-body point-mass systems”, Phys. Rev. D, 57, 7274-7291, (1998). [DOI]. (Cited on page 7.) · doi:10.1103/PhysRevD.57.7274
[60] Jaranowski, P. and Schiffer, G., “Binary black-hole problem at the third post-Newtonian approximation in the orbital motion: Static part”, Phys. Rev. D, 60, 124003, 1-7, (1999). [DOI]. (Cited on page 7.) · doi:10.1103/PhysRevD.60.124003
[61] Kidder, L.E., “Using full information when computing modes of post-Newtonian waveforms from inspiralling compact binaries in circular orbit”, Phys. Rev. D, 77, 044016, 1-15, (2008). [DOI], [arXiv:0710.0614]. (Cited on page 40.) · doi:10.1103/PhysRevD.77.044016
[62] Konigsdorffer, C., Faye, G. and Schiffer, G., “Binary black-hole dynamics at the third-and-a-half post-Newtonian order in the ADM formalism”, Phys. Rev. D, 68, 044004, 1-19, (2003). [DOI]. (Cited on page 7.) · doi:10.1103/PhysRevD.68.044004
[63] Kopeikin, S.M., “General-relativistic equations of binary motion for extended bodies, with conservative corrections and radiation damping”, Sov. Astron., 29, 516-523, (1985). (Cited on page 7.)
[64] Leaver, E.W., “Solutions to a generalized spheroidal wave equation: Teukolsky’s equations in general relativity, and the two-center problem in molecular quantum mechanics”, J. Math. Phys., 27, 1238-1265, (1986). [DOI]. (Cited on pages 27, 31, and 36.) · Zbl 0612.34041 · doi:10.1063/1.527130
[65] “‘LIGO Laboratory Home Page”, project homepage, California Institute of Technology. URL (accessed 21 January 2003): http://www.ligo.caltech.edu/. (Cited on page 5.)
[66] “‘LISA Home Page (ESA)”, project homepage, European Space Agency. URL (accessed 30 September 2003): http://sci.esa.int/home/lisa. (Cited on page 5.)
[67] “‘LISA Home Page (NASA)”, project homepage, Jet Propulsion Laboratory/NASA. URL (accessed 21 January 2003): http://lisa.jpl.nasa.gov/. (Cited on page 5.) · Zbl 1114.83009
[68] Mano, S., Suzuki, H. and Takasugi, E., “Analytic solutions of the Teukolsky equation and their low frequency expansions”, Prog. Theor. Phys., 95, 1079-1096, (1996). [DOI]. (Cited on pages 9, 18, 26, 28, 36, and 51.) · doi:10.1143/PTP.95.1079
[69] Mano, S. and Takasugi, E., “Analytic Solutions of the Teukolsky Equation and Their Properties”, Prog. Theor. Phys., 97, 213-232, (1997). [DOI]. (Cited on pages 26, 31, and 51.) · doi:10.1143/PTP.97.213
[70] Mino, Y., “Perturbatioe approach to an orbital evolution around a supermassive black hole”, Phys. Rev. D, 67, 084027, 1-17, (2003). [DOI]. (Cited on pages 10 and 45.) · doi:10.1103/PhysRevD.67.084027
[71] Mino, Y., Sasaki, M., Shibata, M., Tagoshi, H. and Tanaka, T., “Black Hole Perturbation”, Prog. Theor. Phys. Suppl., 128, 1-121, (1997). [DOI]. (Cited on pages 22, 23, 38, and 41.) · Zbl 0985.83510 · doi:10.1143/PTPS.128.1
[72] Nakamura, T., Oohara, K. and Kojima, Y., “General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes”, Prog. Theor. Phys. Suppl., 90, 1-218, (1987). [DOI]. (Cited on page 8.) · doi:10.1143/PTPS.90.1
[73] Narayan, R., Piran, T. and Shemi, A., “Neutron star and black hole binaries in the Galaxy”, Astrophys. J., 379, L17-L20, (1991). [DOI], [ADS]. (Cited on page 5.) · doi:10.1086/186143
[74] Newman, E.T. and Penrose, R., “An Approach to Gravitational Radiation by a Method of Spin Coefficients”, J. Math. Phys., 3, 566-578, (1962). [DOI], [ADS]. (Cited on page 11.) · Zbl 0108.40905 · doi:10.1063/1.1724257
[75] Newman, E.T. and Penrose, R., “Errata: An approach to gravitational radiation by a method of spin-coefficients”, J. Math. Phys., 4, 998-998, (1963). [DOI]. (Cited on page 11.) · Zbl 0108.40905 · doi:10.1063/1.1704025
[76] Nissanke, S. and Blanchet, L., “Gravitational radiation reaction in the equations of motion of compact binaries to 3.5 post-Newtonian order”, Class. Quantum Grav., 22, 1007-1031, (2005). [DOI]. (Cited on page 7.) · Zbl 1073.83021 · doi:10.1088/0264-9381/22/6/008
[77] Ohashl, A., Tagoshi, H. and Sasaki, M., “Post-Newtonian Expansion of Gravitational Waves from a Compact Star Orbiting a Rotating Black Hole in Brans-Dicke Theory: Circular Orbit Case”, Prog. Theor. Phys., 96, 713-728, (1996). [DOI]. (Cited on page 9.) · doi:10.1143/PTP.96.713
[78] Pan, Y., Buonanno, A., Fujita, R., Racine, E. and Tagoshi, H., “Post-Newtonian factorized multipolar waveforms for spinning, non-precessing black-hole binaries”, arXiv e-print, (2010). [arXiv:1006.0431]. (Cited on page 39.)
[79] Papapetrou, A., “Spinning test-particles in general relativity. I”, Proc. R. Soc. London, Ser. A, 209, 248-258, (1951). [ADS]. (Cited on page 9.) · Zbl 0044.22801 · doi:10.1098/rspa.1951.0200
[80] Pati, M.E. and Will, C.M., “Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations: Foundations”, Phys. Rev. D, 62, 124015, 1-28, (2000). [DOI], [gr-gc/0007087]. (Cited on page 7.) · doi:10.1103/PhysRevD.62.124015
[81] Pati, M.E. and Will, C.M., “Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. II. Two-body equations of motion to second post-Newtonian order, and radiation reaction to 3.5 post-Newtonian order”, Phys. Rev. D, 65, 104008, 1-21, (2002). [DOI], [gr-qc/0201001]. (Cited on page 7.) · doi:10.1103/PhysRevD.65.104008
[82] Phinney, E.S., “The rate of neutron star binary mergers in the universe: Minimal predictions for gravity wave detectors”, Astrophys. J. Lett., 380, L17-L21, (1991). [DOI]. (Cited on page 5.) · doi:10.1086/186163
[83] Poisson, E., “Gravitational radiation from a particle in circular orbit around a black hole. I. Analytic results for the nonrotating case”, Phys. Rev. D, 47, 1497-1510, (1993). [DOI]. (Cited on pages 9, 17, and 39.) · doi:10.1103/PhysRevD.47.1497
[84] Poisson, E., “Gravitational radiation from a particle in circular orbit around a black hole. IV. Analytical results for the slowly rotating case”, Phys. Rev. D, 48, 1860-1863, (1993). [DOI]. (Cited on page 9.) · doi:10.1103/PhysRevD.48.1860
[85] Poisson, E. and Sasaki, M., “Gravitational radiation from a particle in circular orbit around a black hole. V. Black hole absorption and tall corrections”, Phys. Rev. D, 51, 5753-5767, (1995). [DOI]. (Cited on pages 9, 20, and 44.) · doi:10.1103/PhysRevD.51.5753
[86] Press, W.H. and Teukolsky, S.A., “Perturbations of a Rotating Black Hole. II. Dynamical Stability of the Kerr Metric”, Astrophys. J., 185, 649-673, (1973). [DOI], [ADS]. (Cited on page 26.) · doi:10.1086/152445
[87] Regge, T. and Wheeler, J.A., “Stability of a Schwarzschild Singularity”, Phys. Rev., 108, 1063-1069, (1957). [DOI], [ADS]. (Cited on pages 8, 16, and 17.) · Zbl 0079.41902 · doi:10.1103/PhysRev.108.1063
[88] Rowan, S. and Hough, J., “Gravitational Wave Detection by Interferometry (Ground and Space)”, Living Rev. Relativity, 3, lrr-2000-3, (2000). URL (accessed 21 January 2002): http://www.livingreviews.org/lrr-2000-3. (Cited on page 5.) · Zbl 0944.83005 · doi:10.12942/lrr-2000-3
[89] Sago, N., Tanaka, T., Hikida, W., Ganz, K. and Nakano, H., “Adiabatic Evolution of Orbital Parameters in Kerr Spacetime”, Prog. Theor. Phys., 115, 873-907, (2006). [DOI]. (Cited on pages 10 and 45.) · Zbl 1114.83009 · doi:10.1143/PTP.115.873
[90] Sago, N., Tanaka, T., Hikida, W. and Nakano, H., “Adiabatic Radiation Reaction to Orbits in Kerr Spacetime”, Prog. Theor. Phys., 114, 509-514, (2005). [DOI]. (Cited on pages 10 and 45.) · Zbl 1078.83026 · doi:10.1143/PTP.114.509
[91] Sasaki, M., “Post-Newtonian Expansion of the Ingoing-Wave Regge-Wheeler Function”, Prog. Theor. Phys., 92, 17-36, (1994). [DOI]. (Cited on pages 9, 17, 21, 22, and 23.) · doi:10.1143/ptp/92.1.17
[92] Sasaki, M. and Nakamura, T., “A class of new perturbation equations for the Kerr geometry”, Phys. Lett. A, 89, 68-70, (1982). [DOI]. (Cited on pages 8 and 16.) · doi:10.1016/0375-9601(82)90507-2
[93] Sasaki, M. and Nakamura, T., “Gravitational Radiation from a Kerr Black Hole. I - Formulation and a Method for Numerical Analysis -”, Prog. Theor. Phys., 67, 1788-1809, (1982). [DOI]. (Cited on pages 8 and 16.) · Zbl 1098.83549 · doi:10.1143/PTP.67.1788
[94] Shibata, M., Sasaki, M., Tagoshi, H. and Tanaka, T., “Gravitational waves from a particle orbiting around a rotating black hole: Post-Newtonian expansion”, Phys. Rev. D, 51, 1646-1663, (1995). [DOI]. (Cited on pages 9, 18, 26, 39, and 42.) · doi:10.1103/PhysRevD.51.1646
[95] Tagoshi, H., “Post-Newtonian Expansion of Gravitational Waves from a Particle in Slightly eccentric Orbit around a Rotating Black Hole”, Prog. Theor. Phys., 93, 307-333, (1995). [DOI]. (Cited on pages 9 and 42.) · doi:10.1143/PTP.93.307
[96] Tagoshi, H., “Errata: Post-Newtonian Expansion of Gravitational Waves from a Particle in Slightly eccentric Orbit around a Rotating Black Hole”, Prog. Theor. Phys., 118, 577-579, (2007). [DOI]. (Cited on pages 9 and 42.) · doi:10.1143/PTP.118.577
[97] Tagoshi, H. and Fujita, R., in preparation. (Cited on page 39.)
[98] Tagoshi, H., Mano, S. and Takasugi, E., “Post-Newtonian Expansion of Gravitational Waves from a Particle in Circular Orbits around a Rotating Black Hole - Effects of Black Hole Absorption -”, Prog. Theor. Phys., 98, 829-850, (1997). [DOI]. (Cited on pages 9, 36, and 44.) · doi:10.1143/PTP.98.829
[99] Tagoshi, H. and Nakamura, T., “Gravitational waves from a point particle in circular orbit around a black hole: Logarithmic terms in the post-Newtonian expansion”, Phys. Rev. D, 49, 4016-4022, (1994). [DOI]. (Cited on pages 9, 25, and 36.) · doi:10.1103/PhysRevD.49.4016
[100] Tagoshi, H. and Sasaki, M., “Post-Newtonian Expansion of Gravitational Waves from a Particle in Circular Orbit around a Schwarzschild Black Hole”, Prog. Theor. Phys., 92, 745-771, (1994). [DOI]. (Cited on pages 9, 25, 38, 39, and 40.) · doi:10.1143/ptp/92.4.745
[101] Tagoshi, H., Shibata, M., Tanaka, T. and Sasaki, M., “Post-Newtonian expansion of gravitational waves from a particle in circular orbits around a rotating black hole: Up to O(v8) beyond the quadrupole formula”, Phys. Rev. D, 54, 1439-1459, (1996). [DOI], [gr-gc/9603028]. (Cited on pages 9, 18, 26, and 39.) · doi:10.1103/PhysRevD.54.1439
[102] Tagoshi, H., et al. (TAMA Collaboration), “First search for gravitational waves from inspiraling compact binaries using TAMA300 data”, Phys. Rev. D, 63, 062001, 1-5, (2001). [DOI]. (Cited on page 5.)
[103] “‘TAMA300: The 300m Laser Interferometer Gravitational Wave Antenna”, project homepage, National Astronomical Observatory. URL (accessed 21 January 2003): http://tamago.mtk.nao.ac.jp/. (Cited on page 5.)
[104] Tanaka, T., Mino, Y., Sasaki, M. and Shibata, M., “Gravitational waves from a spinning particle in circular orbits around a rotating black hole”, Phys. Rev. D, 54, 3762-3777, (1996). [DOI]. (Cited on page 9.) · doi:10.1103/PhysRevD.54.3762
[105] Tanaka, T., Tagoshi, H. and Sasaki, M., “Gravitational Waves by a Particle in Circular Orbits around a Schwarzschild Black Hole - 5.5 Post-Newtonian Formula -”, Prog. Theor. Phys., 96, 1087-1101, (1996). [DOI]. (Cited on pages 9, 23, and 38.) · doi:10.1143/PTP.96.1087
[106] Teukolsky, S.A., “Perturbations of a Rotating Black Hole. I. Fundamental Equations for Gravitational, Electromagnetic, and Neutrino-Field Perturbations”, Astrophys. J., 185, 635-647, (1973). [DOI], [ADS]. (Cited on pages 8 and 11.) · doi:10.1086/152444
[107] Teukolsky, S.A. and Press, W.H., “Perturbations of a rotating black hole. III. Interaction of the hole with gravitational and electromagnetic radiation”, Astrophys. J., 193, 443-461, (1974). [DOI]. (Cited on page 44.) · doi:10.1086/153180
[108] “‘Virgo”, project homepage, INFN. URL (accessed 21 January 2003): http://www.virgo.infn.it/. (Cited on page 5.) · Zbl 1171.83317
[109] Wagoner, R.V. and Will, C.M., “Post-Newtonian gravitational radiation from orbiting point masses”, Astrophys. J., 210, 764-775, (1976). [DOI]. (Cited on page 6.) · doi:10.1086/154886
[110] Wald, R.M., “Construction of Solutions of Gravitational, Electromagnetic, or Other Perturbation Equations from Solutions of Decoupled Equations”, Phys. Rev. Lett., 41, 203-206, (1978). [DOI]. (Cited on page 8.) · doi:10.1103/PhysRevLett.41.203
[111] Will, C.M. and Wiseman, A.G., “Gravitational radiation from compact binary systems: Gravitational waveforms and energy loss to second post-Newtonian order”, Phys. Rev. D, 54, 4813-4848, (1996). [DOI]. (Cited on page 6.) · doi:10.1103/PhysRevD.54.4813
[112] Zerilli, F.J., “Gravitational Field of a Particle Falling in a Schwarzschild Geometry Analyzed in Tensor Harmonics”, Phys. Rev. D, 2, 2141-2160, (1970). [DOI], [ADS]. (Cited on page 8.) · Zbl 1227.83025 · doi:10.1103/PhysRevD.2.2141
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.