×

Polynomial parametrization for the solutions of Diophantine equations and arithmetic groups. (English) Zbl 1221.11082

The central result of this paper is that \(\text{SL}_2(\mathbb Z)\) is a polynomial family, more precisely, there exist polynomials \(A\), \(B\), \(C\), \(D\) in 26 variables and with coefficients from \(\mathbb Z\) such that all integer solutions of \[ ad - bc = 1 \] are precisely all quadruples \((A,B,C,D)\) where the variables run through the integers. This solves a problem posed by F. Beukers and going back to T. Skolem.
A series of corollaries and examples employ this theorem to deduce that also other subsets of \(\mathbb Z^n\) are polynomial families, e.g., the set of all primitive solutions of any system of linear equations over \(\mathbb Z\), the set of solutions of several quadratic Diophantine equations, every principal congruence subgroup of \(\text{SL}_2 (\mathbb Z)\), the group of regular elements of \(M_{n \times n} (\mathbb Z)\) and some of its subsets, as \(\text{SL}_n (\mathbb Z)\), \(\text{Spin}_n (\mathbb Z)\), ….
To prove the main result, the author shows in an ingenious way that every \(\alpha \in \text{SL}_2 (\mathbb Z)\) can be represented as a product of 9 matrices belonging to several subsets of \(\text{SL}_2 (\mathbb Z)\), each of which is a polynomial family (see Prop. 1.5 on p. 993).

MSC:

11D09 Quadratic and bilinear Diophantine equations
11F06 Structure of modular groups and generalizations; arithmetic groups
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] H. Bass, ”\(K\)-theory and stable algebra,” Inst. Hautes Études Sci. Publ. Math., iss. 22, pp. 5-60, 1964. · Zbl 0248.18025
[2] H. Bass, J. Milnor, and J. -P. Serre, ”Solution of the congruence subgroup problem for \({ SL}_n\,(n\geq 3)\) and \({ Sp}_{2n}\,(n\geq 2)\),” Inst. Hautes Études Sci. Publ. Math., iss. 33, pp. 59-137, 1967. · Zbl 0174.05203
[3] J. Serre, ”On a functorial property of power residue symbols: Correction to \citeBMS,” Inst. Hautes Études Sci. Publ. Math., vol. 44, pp. 241-244, 1974. · Zbl 0297.20054
[4] F. Beukers, ”The Diophantine equation \(Ax^p+By^q=Cz^r\),” Duke Math. J., vol. 91, iss. 1, pp. 61-88, 1998. · Zbl 1038.11505
[5] D. Carter and G. Keller, ”Elementary expressions for unimodular matrices,” Comm. Algebra, vol. 12, iss. 3-4, pp. 379-389, 1984. · Zbl 0572.20030
[6] D. Carter and G. Keller, ”Bounded elementary generation of \({ SL}_n({\mathcal O})\),” Amer. J. Math., vol. 105, iss. 3, pp. 673-687, 1983. · Zbl 0525.20029
[7] G. Cooke and P. J. Weinberger, ”On the construction of division chains in algebraic number rings, with applications to \({ SL}_2\),” Comm. Algebra, vol. 3, pp. 481-524, 1975. · Zbl 0315.12001
[8] H. Darmon and A. Granville, ”On the equations \(z^m=F(x,y)\) and \(Ax^p+By^q=Cz^r\),” Bull. London Math. Soc., vol. 27, iss. 6, pp. 513-543, 1995. · Zbl 0838.11023
[9] S. Frisch, ”Remarks on polynomial parametrization of sets of integer points,” Comm. Algebra, vol. 36, pp. 1110-1114, 2008. · Zbl 1209.11038
[10] R. Gar-El and L. N. Vaserstein, ”On the Diophantine equation \(a^3+b^3+c^3+d^3=0\),” J. Number Theory, vol. 94, iss. 2, pp. 219-223, 2002. · Zbl 1031.11015
[11] R. K. Guy, ”Conference problems session conducted by J. L. Selfridge,” in Number Theory, Gupta, R. and Williams, K. S., Eds., Providence, RI: AMS, 1999, pp. 385-390. · Zbl 0936.11003
[12] Y. Matiyasevich, ”Hilbert’s tenth problem: What was done and what is to be done,” in Hilbert’s Tenth Problem: Relations with Arithmetic and Algebraic Geometry, Denef, J., Lipshitz, L., Pheidas, T., and Van Geel, J., Eds., Providence, RI: Amer. Math. Soc., 2000, pp. 1-47. · Zbl 0994.03002
[13] J. L. Mennicke, ”Finite factor groups of the unimodular group,” Ann. of Math., vol. 81, pp. 31-37, 1965. · Zbl 0135.06504
[14] G. Payne and L. Vaserstein, ”Sums of three cubes,” in The Arithmetic of Function Fields, Goss, D., Hayes, D. R., and Rosen, M. I., Eds., Berlin: de Gruyter, 1992, pp. 443-454. · Zbl 0799.11039
[15] G. Pólya and G. SzegHo, Problems and Theorems in Analysis, II: Theory of Functions, Zeros, Polynomials, Determinants, Number Theory, Geometry, New York: Springer-Verlag, 1976. · Zbl 0311.00002
[16] J. Serre, ”Le problème des groupes de congruence pour SL2,” Ann. of Math., vol. 92, pp. 489-527, 1970. · Zbl 0219.14009
[17] T. Skolem, Diophantische Gleichungen, New York: Springer-Verlag, 1938. · Zbl 0018.29302
[18] A. A. Suslin, ”The structure of the special linear group over rings of polynomials,” Izv. Akad. Nauk SSSR Ser. Mat., vol. 41, iss. 2, pp. 235-252, 477, 1977. · Zbl 0378.13002
[19] O. I. Tavgencprime, ”Bounded generability of Chevalley groups over rings of \(S\)-integer algebraic numbers,” Izv. Akad. Nauk SSSR Ser. Mat., vol. 54, iss. 1, pp. 97-122, 221, 1990. · Zbl 0709.20024
[20] L. N. Vaserstein, ”\(K_1\)-theory and the congruence problem,” Mat. Z., vol. 5, pp. 233-244, 1969. · Zbl 0177.04301
[21] L. N. Vaserstein, ”Stabilization of unitary and orthogonal groups over a ring with involution,” Mat. Sb., vol. 81 (123), pp. 328-351, 1970. · Zbl 0253.20066
[22] L. N. Vaserstein, ”The group \({ SL}_2\) over Dedekind rings of arithmetic type,” Mat. Sb., vol. 89(131), pp. 313-322, 351, 1972. · Zbl 0359.20027
[23] L. N. Vaserstein, ”Bass’s first stable range condition,” J. Pure Appl. Algebra, vol. 34, iss. 2-3, pp. 319-330, 1984. · Zbl 0547.16017
[24] L. N. Vaserstein, ”Normal subgroups of orthogonal groups over commutative rings,” Amer. J. Math., vol. 110, iss. 5, pp. 955-973, 1988. · Zbl 0654.20052
[25] L. N. Vaserstein and A. A. Suslin, ”Serre’s problem on projective modules over polynomial rings, and algebraic \(K\)-theory,” Izv. Akad. Nauk SSSR Ser. Mat., vol. 40, iss. 5, pp. 993-1054, 1199, 1976. · Zbl 0338.13015
[26] U. Zannier, ”Remarks on a question of Skolem about the integer solutions of \(x_1x_2-x_3x_4=1\),” Acta Arith., vol. 78, iss. 2, pp. 153-164, 1996. · Zbl 0867.11013
[27] U. Zannier, ”Parametrizing \({ SL}_2(\mathbb Z)\) and a question of Skolem,” Acta Arith., vol. 110, iss. 4, pp. 331-337, 2003. · Zbl 1049.11029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.