×

Computational methods in noncoding RNA research. (English) Zbl 1143.92010

Summary: Non protein-coding RNAs (ncRNAs) are a research hotspot in bioinformatics. Recent discoveries have revealed new ncRNA families performing a variety of roles, from gene expression regulation to catalytic activities. It is also believed that other families are still to be unveiled. Computational methods developed for protein coding genes often fail when searching for ncRNAs. Noncoding RNAs functionality is often heavily dependent on their secondary structure, which makes gene discovery very different from protein coding RNA genes. This motivated the development of specific methods for ncRNA research. This article reviews the main approaches used to identify ncRNAs and predict secondary structure.

MSC:

92C40 Biochemistry, molecular biology
92-08 Computational methods for problems pertaining to biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abrahams J.P., van den Berg M., van Batenburg E., Pleij C. (1990). Prediction of RNA secondary structure, including pseudoknotting, by computer simulation. Nucleic Acids Res. 18(10): 3035–3044 · doi:10.1093/nar/18.10.3035
[2] Akmaev V.R., Kelley S.T., Stormo G.D. (2000). Phylogenetically enhanced statistical tools for RNA structure prediction. Bioinformatics 16(6): 501–512 · doi:10.1093/bioinformatics/16.6.501
[3] Allali J., Sagot M.F. (2005). A new distance for high level RNA secondary structure comparison. Trans. Comput. Biol. Bioinform. 2(1): 3–14 · Zbl 05103333 · doi:10.1109/TCBB.2005.2
[4] Bafna V., Tang H., Zhang S. (2006). Consensus folding of unaligned RNA sequences revisited. J. Comput. Biol. 13(2): 283–295 · Zbl 1119.92310 · doi:10.1089/cmb.2006.13.283
[5] Bafna, V., Zhang, S.: Fast, R.: Fast database search tool for non-coding RNA. In: Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB2004) (2004)
[6] Barash D. (2004). Second eigenvalue of the Laplacian matrix for predicting RNA conformational switch by mutation. Bioinformatics 20(12): 1861–1869 · doi:10.1093/bioinformatics/bth157
[7] di Bernardo D., Down T., Hubbard T. (2003). ddbRNA: detection of conserved secondary structures in multiple alignments. Bioinformatics 19(13): 1606–1611 · doi:10.1093/bioinformatics/btg229
[8] Bernhart S.H., Hofacker I.L., Stadler P.F. (2006). Local RNA base pairing probabilities in large sequences. Bioinformatics 22(5): 614–615 · Zbl 05325661 · doi:10.1093/bioinformatics/btk014
[9] Blackburn, E.H.: Telomerase (1993) The RNA World. Cold Spring Harbor Laboratory Press, New York
[10] Bonhoeffer S., McCaskill J.S., Stadler P.F., Schuster P. (1993). RNA multi-structure landscapes–a study based on temperature dependent partition functions. Eur. Biophys. J. 22(1): 13–24 · doi:10.1007/BF00205808
[11] Bonnet E., Wuyts J., Rouze P., de Peer Y.V. (2004). Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics 20(17): 2911–2917 · doi:10.1093/bioinformatics/bth374
[12] Bouthinon D., Soldano H. (1999). A new method to predict the consensus secondary structure of a set of unaligned RNA sequences. Bioinformatics 15(10): 785–798 · doi:10.1093/bioinformatics/15.10.785
[13] Brown J.W. (1999). The ribonuclease P database. Nucleic Acids Res. 27(1): 314 · Zbl 05435094 · doi:10.1093/nar/27.1.314
[14] Brown M.P.S. (2000). Small subunit ribosomal RNA modeling using stochastic context-free grammars. Proc. Int. Conf. Intell. Syst. Mol. Biol. 8: 57–66
[15] Brown, M.P.S., Wilson, C.: RNA pseudoknot modeling using intersections of stochastic context free grammars with applications to database search. Pacif Symposium on Biocomputing, pp. 109–125 (1996)
[16] Chan C.Y., Lawrence C.E., Ding Y. (2005). Structure clustering features on the Sfold web server. Bioinformatics 21(20): 3926–3928 · doi:10.1093/bioinformatics/bti632
[17] Chen J.H., Le S.Y., Maizel J.V. (2000). Prediction of common secondary structures of RNAs: a genetic algorithm approach. Nucleic Acids Res. 28(4): 991–999 · doi:10.1093/nar/28.4.991
[18] Chen S.J., Dill K.A. (2000). RNA folding energy landscapes. Proc. Natl Acad. Sci. 97(2): 646–651 · doi:10.1073/pnas.97.2.646
[19] Chiang, D., Joshi, A.K.: Formal grammars for estimating partition functions of double-stranded chain molecules. In: Proceedings of HLT 2002, San Diego, March, pp. 63–67 (2002)
[20] Churkin, A., Barash, D.: RNAmute: RNA secondary structure mutation analysis tool. BMC Bioinformatics 7(221) (2006)
[21] Clote P. (2005). An efficient algorithm to compute the landscape of locally optimal RNA secondary structures with respect to the Nussinov–Jacobson energy model. J. Comput. Biol. 12(1): 83–101 · doi:10.1089/cmb.2005.12.83
[22] Clote P. (2005). RNALOSS: a web server for RNA locally optimal secondary structures. Nucleic Acids Res. 33: 600–604 · Zbl 05437592 · doi:10.1093/nar/gki382
[23] Clote P., Ferre F., Kranakis E., Krizanc D. (2005). Structural RNA has lower folding energy than random RNA of the same dinucleotide frequency. RNA 11: 578–591 · doi:10.1261/rna.7220505
[24] Cole J.R., Chai B., Marsh T.L., Farris R.J., Wang Q., Kulam S.A., Chandra S., McGarell D.M., Schmidt T.M., Garrity G.M., Tiedje J.M. (2003). The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res. 31(1): 442–443 · Zbl 05435272 · doi:10.1093/nar/gkg039
[25] Cormen T.H., Leiserson C.E., Rivest R.L. (1990). Introduction to Algorithms. MIT Press, Cambridge · Zbl 1158.68538
[26] Coventry, A., Kleitman, D.J., Berger, B.: MSARI: multiple sequence alignments for statistical detection of RNA secondary structure. Proc. Natl Acad. Sci. 101(33), 12, 102–12, 107 (2004)
[27] Cupal J., Hofacker I.L., Stadler P.F. (1996). Dynamic programming algorithm for the density of states of RNA secondary structures. Comput. Sci. Biol. 96: 184–186
[28] Danilova L.V., Pervouchine D.D., Favorov A.V., Mironov A.A. (2006). RNAKINETICS: a web server that models secondary structure kinetics of an elongating RNA. J. Bioinform. Comput. Biol. 4(2): 589–596 · doi:10.1142/S0219720006001904
[29] Ding Y. (2006). Statistical and bayesian approaches to RNA secondary structure prediction. RNA 12: 323–331 · doi:10.1261/rna.2274106
[30] Ding Y., Chan C.Y., Lawrence C.E. (2004). Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res. 32(Web Server issue): W135–W141 · Zbl 05435364 · doi:10.1093/nar/gkh449
[31] Ding Y., Lawrence C.E. (2003). A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res. 31(24): 7280–7301 · doi:10.1093/nar/gkg938
[32] Dirks R.M., Pierce N.A. (2003). A partition function algorithm for nucleic acids secondary structure including pseudoknots. J. Comput. Chem. 24(13): 1664–1677 · Zbl 05428255 · doi:10.1002/jcc.10296
[33] Dirks R.M., Pierce N.A. (2004). An algorithm for computing nucleic acid base-pairing probabilities including pseudoknots. J. Comput. Chem. 25: 1295–1304 · Zbl 05428256 · doi:10.1002/jcc.20057
[34] Do C.B., Woods D.A., Batzoglou S. (2006). CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics 22(14): e90–e98 · doi:10.1093/bioinformatics/btl246
[35] Dowell, R.D.: RNA structural alignment using stochastic context-free grammars. Ph.D. Thesis (2004)
[36] Dowell R.D., Eddy S.R. (2006). Efficient pairwise RNA structure prediction and alignment using sequence alignment constraints. BMC Bioinformatics 7: 400 · doi:10.1186/1471-2105-7-400
[37] Eddy S.R. (2001). Non-coding RNA genes and the modern RNA world. Nat. Rev. 2: 919–929 · doi:10.1038/35103511
[38] Eddy S.R. (2002). Computational genomics of noncoding RNA genes. Cell 109: 137–140 · doi:10.1016/S0092-8674(02)00727-4
[39] Eddy S.R. (2002). A memory-efficient dynamic programming algorithm for optimal alignment of a sequence to an RNA secondary structure. BMC Bioinformatics 3(1): 18 · Zbl 05325844 · doi:10.1186/1471-2105-3-18
[40] Eddy S.R. (2004). How do RNA folding algorithms work. Nat. Biotechnol. 22(11): 1457–1458 · doi:10.1038/nbt1104-1457
[41] Eddy, S.R., Durbin, R.: RNA sequence analysis using covariance models. Nucleic Acids Res., 2079–2088 (1994)
[42] Fichant G.A., Burks C. (1991). Identifying potential tRNA genes in genomic DNA sequences. J. Mol. Biol. 220: 659–671 · doi:10.1016/0022-2836(91)90108-I
[43] Flamm C., Fontana W., Hofacker I.L., Schuster P. (2000). RNA folding at elementary step resolution. RNA 6: 325–338 · doi:10.1017/S1355838200992161
[44] Higgings D.G., Thompson J.D., Gibson T.J. (1996). Using CLUSTAL for multiple sequence alignments. Methods Enzymol. 266: 383–402 · doi:10.1016/S0076-6879(96)66024-8
[45] Gan H.H., Fera D., Zorn J., Shiffeldrim N., Tang M., Laserson U., Kim N., Schlick T. (2004). RAG: RNA-As-Graphs database–concepts, analysis, and features. Bioinformatics 20(8): 1285–1291 · doi:10.1093/bioinformatics/bth084
[46] Gorodkin J., Heyer L.J., Stormo G.D. (1997). Finding the most significant common sequence and structure motifs in a set of RNA sequences. Nucleic Acids Res. 25(18): 3724–3732 · doi:10.1093/nar/25.18.3724
[47] Gorodkin J., Stricklin S.L., Stormo G.D. (2001). Discovering common stem-loop motifs in unaligned RNA sequences. Nucleic Acids Res. 29(10): 2135–2144 · doi:10.1093/nar/29.10.2135
[48] Greider, C.: Telomerase biochemistry and regulation (1995) In: Telomeres. Cold Spring Harbor Laboratory Press, New York
[49] Griffiths-Jones S., Bateman A., Marshall M., Khanna A., Eddy S.R. (2003). Rfam: an RNA family database. Nucleic Acids Res. 31(1): 439–441 · Zbl 05435656 · doi:10.1093/nar/gkg006
[50] Griffiths-Jones S., Moxon S., Marshall M., Khanna A., Eddy S.R., Bateman A. (2005). Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33: D121–D124 · Zbl 05437549 · doi:10.1093/nar/gki081
[51] Gulko, B., Haussler, D.: Using multiple alignment and phylogenetic trees to detect RNA secondary structure. Pacific Symposium on Biocomputing, pp. 350–367 (1996)
[52] Haebel P., Gutmann S., Ban N. (2004). Dial tm for rescue: tmRNA engages ribosomes stalled on defective mRNAs. Curr. Opin. Struct. Biol. 14: 58–65 · doi:10.1016/j.sbi.2004.01.010
[53] Hannon G.J. (2002). RNA interference. Nature 418: 244–251 · doi:10.1038/418244a
[54] Havgaard J.H., Lyngso R., Stormo G.D., Gorodkin J. (2005). Pairwise local structural alignment of RNA sequences with sequence similarity less than 40%. Bioinformatics 21(9): 1815–1824 · doi:10.1093/bioinformatics/bti279
[55] Herbel J., Stadler P.F. (2006). Hairpins in a haystack: recognizing microRNA precursors in comparative genomics data. Bioinformatics 22(14): 197–202
[56] Higgs P.G. (2000). RNA secondary structure: physical and computational aspects. Q. Rev. Biophys. 33(3): 199–253 · doi:10.1017/S0033583500003620
[57] Hochsmann, M., Toller, T., Giegerich, R., Kurtz, S.: Local similarity in RNA secondary structures. In: Proceedings of the Computational Systems Bioinformatics (CSB 2003), 159–168 (2003)
[58] Hochsmann M., Voss B., Giegerich R. (2004). Pure multiple RNA secondary structure alignments: a progressive profile approach. IEEE Trans. Comput. Biol. Bioinform. 1(1): 53–62 · Zbl 05103331 · doi:10.1109/TCBB.2004.11
[59] Hofacker I.L. (2003). Vienna RNA secondary structure server. Nucleic Acids Res. 31(13): 3429–3431 · Zbl 05435843 · doi:10.1093/nar/gkg599
[60] Hofacker I.L., Benhart S.H.F., Stadler P.F. (2004). Alignment of RNA base pairing probability matrices. Bioinformatics 20(14): 2222–2227 · doi:10.1093/bioinformatics/bth229
[61] Hofacker I.L., Fekete M., Stadler P.F. (2002). Secondary structure prediction for aligned RNA sequences. J. Mol. Biol. 319: 1059–1066 · doi:10.1016/S0022-2836(02)00308-X
[62] Hofacker I.L., Fontana W., Stadler P.F., Bonhoeffer L.S., Tacker M., Schuster P. (1994). Fast folding and comparison of RNA secondary structures. Monatsh. Chem. 125: 167–188 · doi:10.1007/BF00818163
[63] Holmes, I.: Accelerated probabilistic inference of RNA struture evolution. BMC Bioinformatics 6(73) (2005). doi:10.1186/1471-2105-6-73
[64] Holmes, I., Rubin, G.M.: Pairwise RNA structure comparison with SCFGs. Pacif Symposium on Biocomputing, pp. 163–174 (2002)
[65] Huttenhofer A., Schattner P., Polacek N. (2005). Non-coding RNAs: hope or hype. Trends Genet. 21(5): 289–297 · doi:10.1016/j.tig.2005.03.007
[66] James B.D., Olsen G.J., Pace N.R. (1989). Phylogenetic comparative analysis of RNA secondary structure. Methods Enzymol. 180: 227–239 · doi:10.1016/0076-6879(89)80104-1
[67] Ji Y., Xu X., Stormo G.D. (2004). A graph theoretical approach for predicting common RNA secondary structure motifs including psudoknots in unaligned sequences. Bioinformatics 20(10): 1591–1602 · doi:10.1093/bioinformatics/bth131
[68] Jiang T., Lin G., Ma B., Zhang K. (2002). A general edit distance between RNA structures. J. Comput. Biol. 9: 371–388 · doi:10.1089/10665270252935511
[69] Jiang T., Wang L., Zhang K. (1995). Alignment of trees–an alternative to tree edit. Theor. Comput. Sci. 143: 137–148 · Zbl 0873.68150 · doi:10.1016/0304-3975(95)80015-8
[70] Juan V., Wilson C. (1999). RNA secondary structure prediction based on free energy and phylogenetic analysis. J. Mol. Biol. 289: 935–947 · doi:10.1006/jmbi.1999.2801
[71] Just W. (2001). Computational complexity of multiple sequence alignment with SP-score. J. Comput. Biol. 8(6): 615–623 · doi:10.1089/106652701753307511
[72] Keenan R.J., Freymann D.M., Stroud R.M., Walter P. (2001). The signal recognition particle. Annu. Rev. Biochem. 70: 755–775 · doi:10.1146/annurev.biochem.70.1.755
[73] Klein R.J., Eddy S.R. (2003). RSEARCH: finding homologs of single structured RNA sequences. BMC Bioinformatics 4(1): 44 · Zbl 05325884 · doi:10.1186/1471-2105-4-44
[74] Klein R.J., Misulovin Z., Eddy S.E. (2002). Noncoding RNA genes identified in AT-rich hyperthermophiles. Proc. Natl Acad. Sci. 99(11): 7542–7547 · doi:10.1073/pnas.112063799
[75] Knight R., Birmingham A., Yarus M. (2004). BayesFold: rational 2 o folds that combine thermodynamic, covariation, and chemical data for aligned RNA sequences. RNA 10: 1323–1336 · doi:10.1261/rna.5168504
[76] Knudsen B., Hein J. (1999). RNA secondary structure prediction using stochastic context-free grammars and evolutionary history. Bioinformatics 15(6): 446–454 · doi:10.1093/bioinformatics/15.6.446
[77] Knudsen B., Hein J. (2003). Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res. 31(13): 3423–3428 · Zbl 05436016 · doi:10.1093/nar/gkg614
[78] Krogh A., Brown M., Mian I.S., Sjolander K., Haussler D. (1994). Hidden markov models in computational biology–applications to protein modeling. J. Mol. Biol. 235: 1501–1531 · doi:10.1006/jmbi.1994.1104
[79] Lagos-Quintana M., Rauhut R., Lendeckel W., Tuschl T. (2001). Identification of novel genes coding for small expressed RNAs. Science 294: 853–858 · doi:10.1126/science.1064921
[80] Lai E.C., Tomancak P., Williams R.W., Rubin G.M. (2003). Computational identification of Drosophila microRNA genes. Genome Biol. 4: R42.1–R42.20 · doi:10.1186/gb-2003-4-7-r42
[81] Laslett D., Canback B. (2004). ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32(1): 11–16 · doi:10.1093/nar/gkh152
[82] Laslett D., Canback B., Andersson S. (2002). BRUCE: a program for the detection of transfer-messenger RNA genes in nucleotide sequences. Nucleic Acids Res. 30(15): 3449–3453 · doi:10.1093/nar/gkf459
[83] Le S.V., Chen J.H., Currey K.M., Maizel J.V.J. (1988). A program for predicting significant RNA secondary structures. Comput. Appl. Biosci. 4(1): 153–159
[84] Lim L.P., Lau N.C., Weinstein E.G., Abdelhakim A., Yekta S., Rhoades M.W., Burge C.B., Bartel D.P. (2003). The microRNAs of Caenorhabditis elegans. Genes Dev. 17: 991–1008 · doi:10.1101/gad.1074403
[85] Liu C., Bai B., Skogerbo G., Cai L., Deng W., Zhang Y., Bu D., Zhao Y., Chen R. (2005). NONCODE: an integrated knowledge database of non-coding RNAs. Nucleic Acids Res. 33: D112–D115 · Zbl 05437456 · doi:10.1093/nar/gki041
[86] Liu J., Gough J., Rost B. (2006). Distinguishing protein-coding from non-coding RNAs through support vector machines. PLoS Genet. 2(4): e29 · doi:10.1371/journal.pgen.0020029
[87] Lowe T.M., Eddy S.R. (1997). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25(5): 955–964 · doi:10.1093/nar/25.5.955
[88] Lowe T.M., Eddy S.R. (1999). A computational screen for methylation guide snoRNAs in yeast. Science 283: 1168–1171 · doi:10.1126/science.283.5405.1168
[89] Lowe, T.M.J.: Combining new computational and traditional experimental methods to identify tRNA and snoRNA gene families. Master’s thesis, Washington University (1999)
[90] Luck R., Graf S., Steger G. (1999). ConStruct: a tool for thermodynamic controlled prediction of conserved structure. Nucleic Acids Res. 27(21): 4208–4217 · doi:10.1093/nar/27.21.4208
[91] Lyngso R.B., Pedersen C.N. (2000). RNA pseudoknot prediction in energy-based models. J. Comput. Biol. 7: 409–427 · doi:10.1089/106652700750050862
[92] Mathews D.H. (2005). Predicting a set of minimal free energy RNA secondary structures common to two sequences. Bioinformatics 21(10): 2246–2253 · doi:10.1093/bioinformatics/bti349
[93] Mathews D.H., Disney M.D., Childs J.L., Schroeder S.J., Zuker M., Turner D.H. (2004). Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc. Natl Acad. Sci. 101(19): 7287–7292 · doi:10.1073/pnas.0401799101
[94] Mathews D.H., Turner D.H. (2002). Dynalign: an algorithm for finding the secondary structure common to two RNA sequences. J. Mol. Biol. 317: 191–203 · doi:10.1006/jmbi.2001.5351
[95] Mattick, J.S., Makunin, I.V.: Non-coding RNA. Human Mol. Genet. 15(1), 17–29 (2006)
[96] McCaskill J.S. (1990). The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29: 1105–1119 · doi:10.1002/bip.360290621
[97] Meyer, I.M., Miklos, I.: Co-transcriptional folding is encoded within RNA genes. BMC Mol. Biol. 5(10) (2004). doi:10.1186/1471-2199-5-10
[98] Militello, K.T., Patel, V., Chessler, A.D., Fisher, J.K., Kasper, J.M., Gunasekera, A., Wirth, D.F.: RNA polymerase II synthesizes antisense RNA in Plasmodium falciparum. RNA 11 (2005)
[99] Moulton V. (2005). Tracking down noncoding RNAs. Proc. Natl Acad. Sci. 102(7): 2269–2270 · doi:10.1073/pnas.0500129102
[100] Nam J.W., Kim J., Kim S.K., Zhang B.T. (2006). ProMIR II: a web server for the probabilistic prediction of clustered, nonclustered, conserved and nonconserved microRNAs. Nucleic Acids Res. 34: 455–458 · Zbl 05437820 · doi:10.1093/nar/gkl321
[101] Notredame C., Brien E.A.O., Higgins D.G. (1997). RAGA: RNA sequence alignment by genetic algorithm. Nucleic Acids Res. 25(22): 4570–4580 · doi:10.1093/nar/25.22.4570
[102] Notredame C., Higgins D.G., Heringa J. (2000). T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302(1): 205–217 · doi:10.1006/jmbi.2000.4042
[103] de Novoa P.G., Williams K.P. (2004). The tmRNA website: reductive evolution of tmRNA in plastids and other endosymbionts. Nucleic Acids Res. 32: D104–D108 · Zbl 05436487 · doi:10.1093/nar/gkh102
[104] Nussinov R., Pieczenik G., Griggs J.R., Kleitman D.J. (1978). Algorithms for loop matchings. SIAM J. Appl. Math. 35(1): 68–82 · Zbl 0411.92008 · doi:10.1137/0135006
[105] Pavesi A., Conterio F., Bolchi A., Dieci G., Ottonello S. (1994). Identification of new eukaryotic tRNA genes in genomic DNA databases by a multistep weight matrix analysis of transcriptional control regions. Nucleic Acids Res. 22(7): 1247–1256 · doi:10.1093/nar/22.7.1247
[106] Pedersen J.S., Meyer I.M., Forsberg R., Simmonds P., Hein J. (2004). A comparative method for finding and folding RNA secondary structures withing protein-coding regions. Nucleic Acids Res. 32(16): 4925–4936 · doi:10.1093/nar/gkh839
[107] Perriquet O., Touzet H., Dauchet M. (2003). Finding the common structure shared by two homologous RNAs. Bioinformatics 19(1): 108–116 · doi:10.1093/bioinformatics/19.1.108
[108] Piccinelli P., Rosenblad M.A., Samuelsson T. (2005). Identification and analysis of ribonuclease P and MRP RNA in a broad range of eukaryotes. Nucleic Acids Res. 33(14): 4485–4495 · doi:10.1093/nar/gki756
[109] Pipas J.M., McMahon J.E. (1975). Method for predicting RNA secondary structure. Proc. Natl Acad. Sci. 72(6): 2017–2021 · doi:10.1073/pnas.72.6.2017
[110] Reeder, J., Giegerich, R.: Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics 5(104) (2004)
[111] Reeder J., Hochsmann M., Rehmsmeier M., Voss B., Giegerich R. (2006). Beyond mfold: recent advances in RNA bioinformatics. J. Biotechnol. 124(1): 41–55 · doi:10.1016/j.jbiotec.2006.01.034
[112] Regalia M., Rosenblad M.A., Samuelsson T. (2002). Prediction of signal recognition particle RNA genes. Nucleic Acids Res. 30(15): 3368–3377 · doi:10.1093/nar/gkf468
[113] Reis E.M., Louro R., Nakaya H.I., Verjovski-Almeida S. (2005). As antisense RNA gets intronic. OMICS 9(1): 2–12 · doi:10.1089/omi.2005.9.2
[114] Reis E.M., Nakaya H.I., Louro R., Canavez F.C., Flatschart A.V., Almeida G.T., Egidio C.M., Paquola A.C., Machado A.A., Festa F., Yamamoto D., Alvarenga R., da Silva C.C., Brito G.C., Simon S.D., Moreira-Filho C.A., Leite K.R., Camara-Lopes L.H., Campos F.S., Gimba E., Vignal G.M., El-Dorry H., Sogayar M.C., Barcinski M.A., da Silva A.M., Verjovski-Almeida S. (2004). Antisense intronic non-coding RNA levels correlate to the degree of tumor differentiation in prostate cancer. Oncogene 23(39): 6684–6692 · doi:10.1038/sj.onc.1207880
[115] Ren J., Rastegari B., Condon A., Hoos H. (2005). HotKnots: heuristic prediciton of RNA secondary structures including pseudoknots. RNA 11: 1419–1504 · doi:10.1261/rna.7284905
[116] Rivas E. (2005). Evolutionary models for insertions and deletions in a probabilistic modeling framework. BMC Bioinformatics 6: 63 · doi:10.1186/1471-2105-6-63
[117] Rivas E., Eddy S.R. (1999). A dynamic programming algorithm for RNA structure prediction including pseudoknots. J. Mol. Biol. 285: 2053–2068 · doi:10.1006/jmbi.1998.2436
[118] Rivas E., Eddy S.R. (2000). Secondary structure alone is generally not statistically significant for the detection of noncoding RNAs. Bioinformatics 16(7): 583–605 · doi:10.1093/bioinformatics/16.7.583
[119] Rivas E., Eddy S.R. (2001). Noncoding RNA gene detection using comparative sequence analysis. BMC Bioinformatics 2(1): 8 · Zbl 05325815 · doi:10.1186/1471-2105-2-8
[120] Rosenblad M.A., Gorodkin J., Knudsen B., Zwieb C., Samuelsson T. (2003). SRPDB: signal recognition particle database. Nucleic Acids Res. 31(1): 363–364 · Zbl 05436812 · doi:10.1093/nar/gkg107
[121] Ruan J., Stormo G.D., Zhang W. (2004). ILM: a web server for predicting RNA secondary structures with pseudoknots. Nucleic Acids Res. 32(Web Server issue): W146–W149 · Zbl 05436852 · doi:10.1093/nar/gkh444
[122] Ruan J., Stormo G.D., Zhang W. (2004). An iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots. Bioinformatic 20(1): 58–66 · doi:10.1093/bioinformatics/btg373
[123] Sakakibara, Y., Brown, M.: The application of stochastic context-free grammars to folding, aligning and modeling homologous RNA sequences (1993). Techn. Rep. UCSC-CRL-94-14
[124] Sakakibara, Y., Brown, M., Hughey, R., Mian, I.S., Sjolander, K., Underwood, R.C., Haussler, D.: Stochastic context-free grammars for tRNA modeling. Nucleic Acids Res., 5112–5120 (1994)
[125] Sankoff D. (1985). Simultaneous solution of the RNA folding, alignment and protosequence problems. SIAM J. Appl. Math. 45(5): 810–825 · Zbl 0581.92012 · doi:10.1137/0145048
[126] Schattner P. (2002). Searching for RNA genes using base-composition statistics. Nucleic Acids Res. 30(9): 2076–2082 · doi:10.1093/nar/30.9.2076
[127] Schattner P., Brooks A.N., Lowe T.M. (2005). The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 33: 686–689 · Zbl 05437655 · doi:10.1093/nar/gki366
[128] Schattner P., Decatur W.A., Davis C.A., Ares M.J., Fournier M.J., Lowe T.M. (2004). Genome-wide searching for pseudouridylation guide snoRNAs: analysis of Saccharomyces cerevisiae genome. Nucleic Acids Res. 32(14): 4281–4296 · doi:10.1093/nar/gkh768
[129] Schmitz M., Steger G. (1996). Description of RNA folding by simulated annealing. J. Mol. Biol. 255: 254–266 · doi:10.1006/jmbi.1996.0021
[130] Sczyrba A., Kruger J., Mersch H., Kurtz S., Giegerich R. (2003). RNA-related tools on the Bielefeld bioinformatics server. Nucleic Acids Res. 31(13): 3767–3770 · Zbl 05436925 · doi:10.1093/nar/gkg576
[131] Searls D.B. (2002). The language of genes. Nature 420: 211–217 · doi:10.1038/nature01255
[132] Shapiro B.A., Zhang K. (1990). Comparing multiple RNA secondary structures using tree comparisons. Comput. Appl. Biosci. 6(4): 309–318
[133] Siebert S., Backofen R. (2005). MARNA: multiple alignment and consensus structure prediction of RNAs based on sequence structure comparisons. Bioinformatics 21(16): 3352–3359 · doi:10.1093/bioinformatics/bti550
[134] Steffen P., Voss B., Rehmsmeier M., Reeder J., Giegerich R. (2006). RNAshapes: an integrated RNA analysis package based on abstract shapes. Bioinformatics 22(4): 500–503 · Zbl 05325691 · doi:10.1093/bioinformatics/btk010
[135] Storz G. (2002). An expandind universe of noncoding RNAs. Science 296: 1260–1263 · doi:10.1126/science.1072249
[136] Tabaska J.E., Cary R.B., Gabow H.N., Stormo G.D. (1998). An RNA folding method capable of identifying pseudoknots and base triples. Bioinformatics 14(8): 691–699 · doi:10.1093/bioinformatics/14.8.691
[137] Taneda A. (2005). Cofolga: a genetic algotithm for finding the common folding of two RNAs. Comput. Biol. Chem. 29: 111–119 · Zbl 1096.92019 · doi:10.1016/j.compbiolchem.2005.02.004
[138] Tinoco I.J., Uhlenbeck O.C., Levine M.D. (1971). Estimation of secondary structure in ribonucleic acids. Nature 230(5293): 362–367 · doi:10.1038/230362a0
[139] Touzet H., Perriquet O. (2004). CARNAC: folding families of related RNAs. Nucleic Acids Res. 32: W142–W145 · Zbl 05437176 · doi:10.1093/nar/gkh415
[140] Tsui V., Macke T., Case D.A. (2003). A novel method for finding tRNA genes. RNA 9: 507–517 · doi:10.1261/rna.2193703
[141] Turner D.H., Sugimoto N. (1988). RNA structure prediction. Annu. Rev. Biophys. Biophys. Chem. 17: 167–192 · doi:10.1146/annurev.bb.17.060188.001123
[142] Underwood, R.C.: Stochastic Context-Free Grammars for Modeling Three Spliceosomal Small Nuclear Ribonucleic Acids. Master’s thesis, Baskin Center for Computer Engineering and Information Sciences, University of California (1994)
[143] Uzilov, A.V., Keegan, J.M., Mathews, D.H.: Detection of non-coding RNAs on the basis of predicted secondary structure formation free energy change. BMC Bioinformatics 7 (2006). doi:10.1186/1417-2105-7-173
[144] Voss, B., Giegerich, R., Rehmsmeier, M.: Complete probabilistic analysis of RNA shapes. BMC Biology 4(5) (2006)
[145] Wang C., Ding C., Meraz R.F., Holbrook S.R. (2006). PSoL: a positive sample only learning algorithm for finding ncRNA genes. Bioinformatics 22(21): 2590–2596 · Zbl 05325274 · doi:10.1093/bioinformatics/btl441
[146] Wang X., Zhang J., Li F., Gu J., He T., Zhang X., Li Y. (2005). MicroRNA identification based on sequence and structure alignment. Bioinformatics 21(18): 3610–3614 · doi:10.1093/bioinformatics/bti562
[147] Washiet S., Hofacker I.L. (2004). Consensus folding of aligned sequences as a new measure for the detection of functional RNAs by comparative genomics. J. Mol. Biol. 342: 19–30 · doi:10.1016/j.jmb.2004.07.018
[148] Washietl S., Hofacker I.L., Stadler P.F. (2005). Fast and reliable prediction of noncoding RNAs. Proc. Natl Acad. Sci. 102(7): 2454–2459 · doi:10.1073/pnas.0409169102
[149] Waterman M.S., Smith T.F. (1978). RNA secondary structure: a complete mathematical analysis. Math. Biosci. 42: 257–266 · Zbl 0402.92016 · doi:10.1016/0025-5564(78)90099-8
[150] Weinberg Z., Ruzzo W.L. (2004). Exploiting conserved structure for faster annotation of non-coding RNAs without loss of accuracy. Bioinformatics 20(suppl 1): i334–i341 · doi:10.1093/bioinformatics/bth925
[151] Weinberg Z., Ruzzo W.L. (2006). Sequence-based heuristics for faster annotation of non-coding RNA families. Bioinformatics 22(1): 35–39 · Zbl 05325796 · doi:10.1093/bioinformatics/bti743
[152] Workman C., Krogh A. (1999). No evidence that mRNAs have lower folding free energies than random sequences with the same dinucleotide distribution. Nucleic Acids Res. 27(24): 4816–4822 · doi:10.1093/nar/27.24.4816
[153] Wuchty S., Fontana W., Hofacker I.L., Schuster P. (1999). Complete suboptimal folding of RNA and the stability of secondary structure. Biopolymers 49: 145–165 · doi:10.1002/(SICI)1097-0282(199902)49:2<145::AID-BIP4>3.0.CO;2-G
[154] Yang, J.H., Zhang, X.C., Huang, Z.P., Zhou, H., Huang, M.B., Zhang, S., Chen, Y.Q., Qu, L.H.: snoSeeker: an advanced computational package for screening of guide and orphan sno RNA genes in the human genome. Nucleic Acids Res (2006). doi:10.1093/nar/gkl672
[155] Yang Z., Zhu Q., Luo K., Zhou Q. (2001). The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature 414: 317–322 · doi:10.1038/35104575
[156] Ying X., Luo H., Luo J., Li W. (2004). RDfolder: a web server for prediction of RNA secondary structure. Nucleic Acids Res. 32(Web Server issue): W150–W153 · Zbl 05437386 · doi:10.1093/nar/gkh445
[157] Zuker M. (1989). On finding all suboptimal foldings of an RNA molecule. Science 244: 48–52 · Zbl 1226.92029 · doi:10.1126/science.2468181
[158] Zuker M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31(13): 3406–3415 · Zbl 05437421 · doi:10.1093/nar/gkg595
[159] Zuker, M., Mathews, D.H., Turner, D.H.: Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide. RNA Biochem. Biotechnol. 11–43 (1999)
[160] Zuker M., Stiegler P. (1981). Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9(1): 133–148 · Zbl 05437422 · doi:10.1093/nar/9.1.133
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.