A complete solution to spectrum problem for five-vertex graphs with application to traffic grooming in optical networks.

Summary: A G-design of order n is a decomposition of the complete graph on n vertices into edge-disjoint subgraphs isomorphic to G. Grooming uniform all-to-all traffic in optical ring networks with grooming ratio C requires the determination of graph decompositions of the complete graph on n vertices into subgraphs each having at most C edges. The drop cost of such a grooming is the total number of vertices of nonzero degree in these subgraphs, and the grooming is optimal when the drop cost is minimum. The existence spectrum problem of G-designs for five-vertex graphs is a long standing problem posed by J.-C. Bermond et al. [Ars Comb. 10, 211–254 (1980; Zbl 0454.05053)], which is closely related to traffic groomings in optical networks. Although considerable progress has been made over the past 30 years, the existence problems for such G-designs and their related traffic groomings in optical networks are far from complete. In this paper, we first give a complete solution to this spectrum problem for five-vertex graphs by eliminating all the undetermined possible exceptions. Then, we determine almost completely the minimum drop cost of 8-groomings for all orders n by reducing the 37 possible exceptions to 8. Finally, we show the minimum possible drop cost of 9-groomings for all orders n is realizable with 14 exceptions and 12 possible exceptions.

Keywords: graph decomposition; G-design; optical networks; traffic grooming; wavelength-division multiplexing

doi:10.1002/jcd.21405